mirror of
https://github.com/hyperion-project/hyperion.ng.git
synced 2023-10-10 13:36:59 +02:00
detect config is readonly, adalight and other stuff (#333)
* update lightberry sketches update compilehowwto (windows disclaimer) some refactoring in main cmakelists + preparation for windows compile tune ada driver, set delayAfterConnect default to 1.5s because some arduino (e.g. mega r3) needs this set priority min/max for grabber/network services - prevent colliding prios between webui/background stuff and grabbers/net services * add check if config is writable. TODO do something usefull in webui * fix indention error * fix typo * fix webui can't write led config * typo * fix cmakelists * change methode of detecting linux
This commit is contained in:
parent
5774457893
commit
a724fd1535
@ -19,21 +19,32 @@ SET ( HYPERION_VERSION_PATCH 0 )
|
||||
|
||||
SET ( DEFAULT_AMLOGIC OFF )
|
||||
SET ( DEFAULT_DISPMANX OFF )
|
||||
SET ( DEFAULT_FB ON )
|
||||
SET ( DEFAULT_OSX OFF )
|
||||
SET ( DEFAULT_X11 OFF )
|
||||
SET ( DEFAULT_SPIDEV ON )
|
||||
SET ( DEFAULT_WS281XPWM OFF )
|
||||
SET ( DEFAULT_V4L2 ON )
|
||||
SET ( DEFAULT_USE_SHARED_AVAHI_LIBS OFF )
|
||||
SET ( DEFAULT_USE_AVAHI_LIBS ON )
|
||||
SET ( DEFAULT_USE_SYSTEM_PROTO_LIBS OFF )
|
||||
SET ( DEFAULT_TESTS OFF )
|
||||
|
||||
IF ( ${CMAKE_SYSTEM} MATCHES "Linux" )
|
||||
SET ( DEFAULT_V4L2 ON )
|
||||
SET ( DEFAULT_SPIDEV ON )
|
||||
SET ( DEFAULT_FB ON )
|
||||
ELSE()
|
||||
SET ( DEFAULT_V4L2 OFF )
|
||||
SET ( DEFAULT_SPIDEV OFF )
|
||||
SET ( DEFAULT_FB OFF )
|
||||
ENDIF()
|
||||
|
||||
if (APPLE)
|
||||
SET( PLATFORM "osx")
|
||||
endif()
|
||||
|
||||
if (WIN32)
|
||||
SET( PLATFORM "windows")
|
||||
endif()
|
||||
|
||||
if ( NOT DEFINED PLATFORM )
|
||||
if ( "${CMAKE_SYSTEM_PROCESSOR}" MATCHES "x86" )
|
||||
SET( PLATFORM "x86")
|
||||
@ -56,16 +67,12 @@ endif()
|
||||
|
||||
message( STATUS "PLATFORM: ${PLATFORM}")
|
||||
|
||||
|
||||
if ( "${PLATFORM}" MATCHES "osx" )
|
||||
SET(CMAKE_PREFIX_PATH ${CMAKE_PREFIX_PATH} "/usr/local/opt/qt5" CACHE STRING "path to your QT5 files" )
|
||||
include_directories("/opt/X11/include/")
|
||||
SET ( DEFAULT_OSX ON )
|
||||
SET ( DEFAULT_V4L2 OFF )
|
||||
SET ( DEFAULT_SPIDEV OFF )
|
||||
SET ( DEFAULT_FB OFF )
|
||||
SET ( DEFAULT_WS281XPWM OFF )
|
||||
SET ( DEFAULT_USE_AVAHI_LIBS OFF )
|
||||
SET ( DEFAULT_USE_SHARED_AVAHI_LIBS OFF )
|
||||
SET ( DEFAULT_USE_AVAHI_LIBS OFF )
|
||||
elseif ( "${PLATFORM}" STREQUAL "rpi" )
|
||||
SET ( DEFAULT_DISPMANX ON )
|
||||
SET ( DEFAULT_WS281XPWM ON )
|
||||
@ -83,6 +90,8 @@ elseif ( "${PLATFORM}" MATCHES "x86" )
|
||||
endif()
|
||||
elseif ( "${PLATFORM}" STREQUAL "imx6" )
|
||||
SET ( DEFAULT_FB ON )
|
||||
elseif ( "${PLATFORM}" STREQUAL "windows" )
|
||||
MESSAGE( WARNING "Hyperion is not developed nor tested on MS Windows.")
|
||||
endif()
|
||||
|
||||
# enable tests for -dev builds
|
||||
|
@ -7,6 +7,9 @@ sudo apt-get update
|
||||
sudo apt-get install git cmake build-essential qtbase5-dev libqt5serialport5-dev libusb-1.0-0-dev python-dev libxrender-dev libavahi-core-dev libavahi-compat-libdnssd-dev
|
||||
```
|
||||
|
||||
**ATTENTION Win10LinuxSubsystem** we do not (/we can't) support using hyperion in linux subsystem of MS Windows 10, albeit some users tested it with success. Keep in mind to disable
|
||||
all linux specific led and grabber hardware via cmake. Because we use QT as framework in hyperion, serialport leds and network driven devices could work.
|
||||
|
||||
## RPI Only
|
||||
when you build on the rapberry pi and include the dispmanx grabber (which is the default)
|
||||
you also need the firmware including headers installed. This downloads the firmware from the raspberrypi github
|
||||
|
@ -9,6 +9,8 @@
|
||||
set following values to your needs
|
||||
**************************************/
|
||||
|
||||
#define INITAL_LED_TEST_ENABLED true
|
||||
|
||||
// Number of leds in your strip. set to "1" and ANALOG_OUTPUT_ENABLED to "true" to activate analog only
|
||||
#define NUM_LEDS 100
|
||||
|
||||
@ -92,7 +94,7 @@ void showColor(const CRGB& led) {
|
||||
|
||||
// switch of digital and analog leds
|
||||
void switchOff() {
|
||||
#if ANALOG_ONLY == false
|
||||
#if NUM_LEDS > 1 || ANALOG_OUTPUT_ENABLED == false
|
||||
memset(leds, 0, NUM_LEDS * sizeof(struct CRGB));
|
||||
FastLED.show();
|
||||
#endif
|
||||
@ -145,11 +147,13 @@ void setup() {
|
||||
FastLED.setDither ( DITHER_MODE );
|
||||
|
||||
// initial RGB flash
|
||||
#if INITAL_LED_TEST_ENABLED == true
|
||||
showColor(CRGB(255, 0, 0)); delay(400);
|
||||
showColor(CRGB(0, 255, 0)); delay(400);
|
||||
showColor(CRGB(0, 0, 255)); delay(400);
|
||||
#endif
|
||||
showColor(CRGB(0, 0, 0));
|
||||
|
||||
|
||||
Serial.begin(serialRate);
|
||||
Serial.print("Ada\n"); // Send "Magic Word" string to host
|
||||
|
||||
@ -159,7 +163,7 @@ void setup() {
|
||||
|
||||
// loop() is avoided as even that small bit of function overhead
|
||||
// has a measurable impact on this code's overall throughput.
|
||||
while (true) {
|
||||
for(;;) {
|
||||
// wait for first byte of Magic Word
|
||||
for (i = 0; i < sizeof prefix; ++i) {
|
||||
// If next byte is not in Magic Word, the start over
|
||||
|
@ -0,0 +1,273 @@
|
||||
// Arduino "bridge" code between host computer and WS2801-based digital
|
||||
// RGB LED pixels (e.g. Adafruit product ID #322). Intended for use
|
||||
// with USB-native boards such as Teensy or Adafruit 32u4 Breakout;
|
||||
// works on normal serial Arduinos, but throughput is severely limited.
|
||||
// LED data is streamed, not buffered, making this suitable for larger
|
||||
// installations (e.g. video wall, etc.) than could otherwise be held
|
||||
// in the Arduino's limited RAM.
|
||||
|
||||
// Some effort is put into avoiding buffer underruns (where the output
|
||||
// side becomes starved of data). The WS2801 latch protocol, being
|
||||
// delay-based, could be inadvertently triggered if the USB bus or CPU
|
||||
// is swamped with other tasks. This code buffers incoming serial data
|
||||
// and introduces intentional pauses if there's a threat of the buffer
|
||||
// draining prematurely. The cost of this complexity is somewhat
|
||||
// reduced throughput, the gain is that most visual glitches are
|
||||
// avoided (though ultimately a function of the load on the USB bus and
|
||||
// host CPU, and out of our control).
|
||||
|
||||
// LED data and clock lines are connected to the Arduino's SPI output.
|
||||
// On traditional Arduino boards, SPI data out is digital pin 11 and
|
||||
// clock is digital pin 13. On both Teensy and the 32u4 Breakout,
|
||||
// data out is pin B2, clock is B1. LEDs should be externally
|
||||
// powered -- trying to run any more than just a few off the Arduino's
|
||||
// 5V line is generally a Bad Idea. LED ground should also be
|
||||
// connected to Arduino ground.
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// This file is part of Adalight.
|
||||
|
||||
// Adalight is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Lesser General Public License as
|
||||
// published by the Free Software Foundation, either version 3 of
|
||||
// the License, or (at your option) any later version.
|
||||
|
||||
// Adalight is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Lesser General Public License for more details.
|
||||
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License along with Adalight. If not, see
|
||||
// <http://www.gnu.org/licenses/>.
|
||||
// --------------------------------------------------------------------
|
||||
|
||||
#include <SPI.h>
|
||||
|
||||
// LED pin for Adafruit 32u4 Breakout Board:
|
||||
//#define LED_DDR DDRE
|
||||
//#define LED_PORT PORTE
|
||||
//#define LED_PIN _BV(PORTE6)
|
||||
// LED pin for Teensy:
|
||||
//#define LED_DDR DDRD
|
||||
//#define LED_PORT PORTD
|
||||
//#define LED_PIN _BV(PORTD6)
|
||||
// LED pin for Arduino:
|
||||
#define LED_DDR DDRB
|
||||
#define LED_PORT PORTB
|
||||
#define LED_PIN _BV(PORTB5)
|
||||
|
||||
// A 'magic word' (along with LED count & checksum) precedes each block
|
||||
// of LED data; this assists the microcontroller in syncing up with the
|
||||
// host-side software and properly issuing the latch (host I/O is
|
||||
// likely buffered, making usleep() unreliable for latch). You may see
|
||||
// an initial glitchy frame or two until the two come into alignment.
|
||||
// The magic word can be whatever sequence you like, but each character
|
||||
// should be unique, and frequent pixel values like 0 and 255 are
|
||||
// avoided -- fewer false positives. The host software will need to
|
||||
// generate a compatible header: immediately following the magic word
|
||||
// are three bytes: a 16-bit count of the number of LEDs (high byte
|
||||
// first) followed by a simple checksum value (high byte XOR low byte
|
||||
// XOR 0x55). LED data follows, 3 bytes per LED, in order R, G, B,
|
||||
// where 0 = off and 255 = max brightness.
|
||||
|
||||
static const uint8_t magic[] = {'A','d','a'};
|
||||
#define MAGICSIZE sizeof(magic)
|
||||
#define HEADERSIZE (MAGICSIZE + 3)
|
||||
|
||||
#define MODE_HEADER 0
|
||||
#define MODE_HOLD 1
|
||||
#define MODE_DATA 2
|
||||
|
||||
#define DATA_LED A5
|
||||
#define SPI_LED A3
|
||||
|
||||
// If no serial data is received for a while, the LEDs are shut off
|
||||
// automatically. This avoids the annoying "stuck pixel" look when
|
||||
// quitting LED display programs on the host computer.
|
||||
static const unsigned long serialTimeout = 15000; // 15 seconds
|
||||
|
||||
void setup()
|
||||
{
|
||||
// Dirty trick: the circular buffer for serial data is 256 bytes,
|
||||
// and the "in" and "out" indices are unsigned 8-bit types -- this
|
||||
// much simplifies the cases where in/out need to "wrap around" the
|
||||
// beginning/end of the buffer. Otherwise there'd be a ton of bit-
|
||||
// masking and/or conditional code every time one of these indices
|
||||
// needs to change, slowing things down tremendously.
|
||||
uint8_t
|
||||
buffer[256],
|
||||
indexIn = 0,
|
||||
indexOut = 0,
|
||||
mode = MODE_HEADER,
|
||||
hi, lo, chk, i, spiFlag;
|
||||
int16_t
|
||||
bytesBuffered = 0,
|
||||
hold = 0,
|
||||
c;
|
||||
int32_t
|
||||
bytesRemaining;
|
||||
unsigned long
|
||||
startTime,
|
||||
lastByteTime,
|
||||
lastAckTime,
|
||||
t;
|
||||
bool
|
||||
data_in_led = false,
|
||||
spi_out_led = false;
|
||||
|
||||
LED_DDR |= LED_PIN; // Enable output for LED
|
||||
LED_PORT &= ~LED_PIN; // LED off
|
||||
pinMode(DATA_LED, OUTPUT); //data in led
|
||||
pinMode(SPI_LED, OUTPUT); //data out led
|
||||
|
||||
delay(5000);
|
||||
|
||||
Serial.begin(115200); // Teensy/32u4 disregards baud rate; is OK!
|
||||
|
||||
SPI.begin();
|
||||
SPI.setBitOrder(MSBFIRST);
|
||||
SPI.setDataMode(SPI_MODE0);
|
||||
SPI.setClockDivider(SPI_CLOCK_DIV16); // 1 MHz max, else flicker
|
||||
|
||||
// Issue test pattern to LEDs on startup. This helps verify that
|
||||
// wiring between the Arduino and LEDs is correct. Not knowing the
|
||||
// actual number of LEDs connected, this sets all of them (well, up
|
||||
// to the first 25,000, so as not to be TOO time consuming) to red,
|
||||
// green, blue, then off. Once you're confident everything is working
|
||||
// end-to-end, it's OK to comment this out and reprogram the Arduino.
|
||||
uint8_t testcolor[] = { 0, 0, 0, 255, 0, 0 };
|
||||
for(int i=0; i<5; i++){
|
||||
for(SPDR = 0x00; !(SPSR & _BV(SPIF)); );
|
||||
}
|
||||
for(char n=3; n>=0; n--) {
|
||||
for(c=0; c<25000; c++) {
|
||||
for(i=0; i<3; i++) {
|
||||
for(SPDR = testcolor[n + i]; !(SPSR & _BV(SPIF)); );
|
||||
}
|
||||
for(i=0; i<1; i++) {
|
||||
for(SPDR = 0xFF; !(SPSR & _BV(SPIF)); );
|
||||
}
|
||||
}
|
||||
for(int i=0; i<16; i++){
|
||||
for(SPDR = 0x00; !(SPSR & _BV(SPIF)); );
|
||||
}
|
||||
delay(1); // One millisecond pause = latch
|
||||
digitalWrite(SPI_LED, spi_out_led = !spi_out_led);
|
||||
}
|
||||
|
||||
Serial.print("Ada\n"); // Send ACK string to host
|
||||
|
||||
startTime = micros();
|
||||
lastByteTime = lastAckTime = millis();
|
||||
|
||||
// loop() is avoided as even that small bit of function overhead
|
||||
// has a measurable impact on this code's overall throughput.
|
||||
|
||||
for(;;) {
|
||||
digitalWrite(DATA_LED, LOW);
|
||||
digitalWrite(SPI_LED, LOW);
|
||||
// Implementation is a simple finite-state machine.
|
||||
// Regardless of mode, check for serial input each time:
|
||||
t = millis();
|
||||
if((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) {
|
||||
buffer[indexIn++] = c;
|
||||
bytesBuffered++;
|
||||
lastByteTime = lastAckTime = t; // Reset timeout counters
|
||||
} else {
|
||||
// No data received. If this persists, send an ACK packet
|
||||
// to host once every second to alert it to our presence.
|
||||
if((t - lastAckTime) > 1000) {
|
||||
Serial.print("Ada\n"); // Send ACK string to host
|
||||
lastAckTime = t; // Reset counter
|
||||
}
|
||||
// If no data received for an extended time, turn off all LEDs.
|
||||
if((t - lastByteTime) > serialTimeout) {
|
||||
for(c=0; c<25000; c++) {
|
||||
for(i=0; i<3; i++) {
|
||||
for(SPDR = 0x00; !(SPSR & _BV(SPIF)); );
|
||||
}
|
||||
for(i=0; i<1; i++) {
|
||||
for(SPDR = 0xFF; !(SPSR & _BV(SPIF)); );
|
||||
}
|
||||
}
|
||||
delay(1); // One millisecond pause = latch
|
||||
lastByteTime = t; // Reset counter
|
||||
}
|
||||
}
|
||||
|
||||
switch(mode) {
|
||||
|
||||
case MODE_HEADER:
|
||||
|
||||
// In header-seeking mode. Is there enough data to check?
|
||||
if(bytesBuffered >= HEADERSIZE) {
|
||||
// Indeed. Check for a 'magic word' match.
|
||||
for(i=0; (i<MAGICSIZE) && (buffer[indexOut++] == magic[i++]););
|
||||
if(i == MAGICSIZE) {
|
||||
// Magic word matches. Now how about the checksum?
|
||||
hi = buffer[indexOut++];
|
||||
lo = buffer[indexOut++];
|
||||
chk = buffer[indexOut++];
|
||||
if(chk == (hi ^ lo ^ 0x55)) {
|
||||
// Checksum looks valid. Get 16-bit LED count, add 1
|
||||
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
|
||||
bytesRemaining = 4L * (256L * (long)hi + (long)lo) +4L + (256L *(long)hi + (long)lo +15)/16;
|
||||
bytesBuffered -= 3;
|
||||
spiFlag = 0; // No data out yet
|
||||
mode = MODE_HOLD; // Proceed to latch wait mode
|
||||
digitalWrite(DATA_LED, data_in_led = !data_in_led);
|
||||
} else {
|
||||
// Checksum didn't match; search resumes after magic word.
|
||||
indexOut -= 3; // Rewind
|
||||
}
|
||||
} // else no header match. Resume at first mismatched byte.
|
||||
bytesBuffered -= i;
|
||||
}
|
||||
break;
|
||||
|
||||
case MODE_HOLD:
|
||||
|
||||
// Ostensibly "waiting for the latch from the prior frame
|
||||
// to complete" mode, but may also revert to this mode when
|
||||
// underrun prevention necessitates a delay.
|
||||
|
||||
if((micros() - startTime) < hold) break; // Still holding; keep buffering
|
||||
|
||||
// Latch/delay complete. Advance to data-issuing mode...
|
||||
LED_PORT &= ~LED_PIN; // LED off
|
||||
mode = MODE_DATA; // ...and fall through (no break):
|
||||
|
||||
case MODE_DATA:
|
||||
digitalWrite(SPI_LED, spi_out_led = !spi_out_led);
|
||||
while(spiFlag && !(SPSR & _BV(SPIF))); // Wait for prior byte
|
||||
if(bytesRemaining > 0) {
|
||||
if(bytesBuffered > 0) {
|
||||
SPDR = buffer[indexOut++]; // Issue next byte
|
||||
bytesBuffered--;
|
||||
bytesRemaining--;
|
||||
spiFlag = 1;
|
||||
}
|
||||
// If serial buffer is threatening to underrun, start
|
||||
// introducing progressively longer pauses to allow more
|
||||
// data to arrive (up to a point).
|
||||
// if((bytesBuffered < 32) && (bytesRemaining > bytesBuffered)) {
|
||||
// startTime = micros();
|
||||
// hold = 100 + (32 - bytesBuffered) * 10;
|
||||
// mode = MODE_HOLD;
|
||||
//}
|
||||
} else {
|
||||
// End of data -- issue latch:
|
||||
startTime = micros();
|
||||
hold = 1000; // Latch duration = 1000 uS
|
||||
LED_PORT |= LED_PIN; // LED on
|
||||
mode = MODE_HEADER; // Begin next header search
|
||||
}
|
||||
} // end switch
|
||||
} // end for(;;)
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
// Not used. See note in setup() function.
|
||||
}
|
@ -71,7 +71,7 @@
|
||||
// XOR 0x55). LED data follows, 3 bytes per LED, in order R, G, B,
|
||||
// where 0 = off and 255 = max brightness.
|
||||
|
||||
static const uint8_t magic[] = {'A', 'd', 'a'};
|
||||
static const uint8_t magic[] = {'A','d','a'};
|
||||
#define MAGICSIZE sizeof(magic)
|
||||
#define HEADERSIZE (MAGICSIZE + 3)
|
||||
|
||||
@ -96,37 +96,39 @@ void setup()
|
||||
// masking and/or conditional code every time one of these indices
|
||||
// needs to change, slowing things down tremendously.
|
||||
uint8_t
|
||||
buffer[256],
|
||||
indexIn = 0,
|
||||
indexOut = 0,
|
||||
mode = MODE_HEADER,
|
||||
hi, lo, chk, i, spiFlag;
|
||||
buffer[256],
|
||||
indexIn = 0,
|
||||
indexOut = 0,
|
||||
mode = MODE_HEADER,
|
||||
hi, lo, chk, i, spiFlag;
|
||||
int16_t
|
||||
bytesBuffered = 0,
|
||||
hold = 0,
|
||||
c;
|
||||
bytesBuffered = 0,
|
||||
hold = 0,
|
||||
c;
|
||||
int32_t
|
||||
bytesRemaining;
|
||||
bytesRemaining;
|
||||
unsigned long
|
||||
startTime,
|
||||
lastByteTime,
|
||||
lastAckTime,
|
||||
t;
|
||||
bool
|
||||
data_in_led = false,
|
||||
spi_out_led = false;
|
||||
|
||||
startTime,
|
||||
lastByteTime,
|
||||
lastAckTime,
|
||||
t;
|
||||
bool
|
||||
data_in_led = false,
|
||||
spi_out_led = false;
|
||||
|
||||
LED_DDR |= LED_PIN; // Enable output for LED
|
||||
LED_PORT &= ~LED_PIN; // LED off
|
||||
pinMode(DATA_LED, OUTPUT); //data in led
|
||||
pinMode(SPI_LED, OUTPUT); //data out led
|
||||
|
||||
delay(5000);
|
||||
|
||||
Serial.begin(115200); // Teensy/32u4 disregards baud rate; is OK!
|
||||
|
||||
SPI.begin();
|
||||
SPI.setBitOrder(MSBFIRST);
|
||||
SPI.setDataMode(SPI_MODE0);
|
||||
SPI.setClockDivider(SPI_CLOCK_DIV8); // 2Mhz
|
||||
SPI.setClockDivider(SPI_CLOCK_DIV16); // 1 MHz max, else flicker
|
||||
|
||||
// Issue test pattern to LEDs on startup. This helps verify that
|
||||
// wiring between the Arduino and LEDs is correct. Not knowing the
|
||||
@ -135,23 +137,24 @@ void setup()
|
||||
// green, blue, then off. Once you're confident everything is working
|
||||
// end-to-end, it's OK to comment this out and reprogram the Arduino.
|
||||
uint8_t testcolor[] = { 0, 0, 0, 255, 0, 0 };
|
||||
for (char n = 3; n >= 0; n--) {
|
||||
for (int i = 0; i < 4; i++) { //Start Frame
|
||||
for (SPDR = 0x00; !(SPSR & _BV(SPIF)); );
|
||||
}
|
||||
for (c = 0; c < 25000; c++) {
|
||||
for (SPDR = 0xFF; !(SPSR & _BV(SPIF)); ); //Brightness byte
|
||||
for (i = 0; i < 3; i++) {
|
||||
for (SPDR = testcolor[n + i]; !(SPSR & _BV(SPIF)); ); //BGR
|
||||
for(int i=0; i<5; i++){
|
||||
for(SPDR = 0x00; !(SPSR & _BV(SPIF)); );
|
||||
}
|
||||
for(char n=3; n>=0; n--) {
|
||||
for(c=0; c<25000; c++) {
|
||||
for(i=0; i<3; i++) {
|
||||
for(SPDR = testcolor[n + i]; !(SPSR & _BV(SPIF)); );
|
||||
}
|
||||
for(i=0; i<1; i++) {
|
||||
for(SPDR = 0xFF; !(SPSR & _BV(SPIF)); );
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < 4; i++) { //Stop Frame
|
||||
for (SPDR = 0xFF; !(SPSR & _BV(SPIF)); );
|
||||
for(int i=0; i<16; i++){
|
||||
for(SPDR = 0x00; !(SPSR & _BV(SPIF)); );
|
||||
}
|
||||
|
||||
delay(1); // One millisecond pause = latch
|
||||
digitalWrite(SPI_LED, spi_out_led = !spi_out_led);
|
||||
}
|
||||
digitalWrite(SPI_LED, spi_out_led = !spi_out_led);
|
||||
|
||||
Serial.print("Ada\n"); // Send ACK string to host
|
||||
|
||||
@ -161,109 +164,105 @@ void setup()
|
||||
// loop() is avoided as even that small bit of function overhead
|
||||
// has a measurable impact on this code's overall throughput.
|
||||
|
||||
for (;;) {
|
||||
for(;;) {
|
||||
digitalWrite(DATA_LED, LOW);
|
||||
digitalWrite(SPI_LED, LOW);
|
||||
// Implementation is a simple finite-state machine.
|
||||
// Regardless of mode, check for serial input each time:
|
||||
t = millis();
|
||||
if ((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) {
|
||||
if((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) {
|
||||
buffer[indexIn++] = c;
|
||||
bytesBuffered++;
|
||||
lastByteTime = lastAckTime = t; // Reset timeout counters
|
||||
} else {
|
||||
// No data received. If this persists, send an ACK packet
|
||||
// to host once every second to alert it to our presence.
|
||||
if ((t - lastAckTime) > 1000) {
|
||||
if((t - lastAckTime) > 1000) {
|
||||
Serial.print("Ada\n"); // Send ACK string to host
|
||||
lastAckTime = t; // Reset counter
|
||||
}
|
||||
// If no data received for an extended time, turn off all LEDs.
|
||||
if ((t - lastByteTime) > serialTimeout) {
|
||||
for (i = 0; i < 4; i++) { //Start Frame
|
||||
for (SPDR = 0x00; !(SPSR & _BV(SPIF)); );
|
||||
}
|
||||
for (c = 0; c < 25000; c++) {
|
||||
for (SPDR = 0xFF; !(SPSR & _BV(SPIF)); ); //Brightness Byte
|
||||
for (i = 0; i < 3; i++) {
|
||||
for (SPDR = 0x00; !(SPSR & _BV(SPIF)); ); //BGR
|
||||
if((t - lastByteTime) > serialTimeout) {
|
||||
for(c=0; c<25000; c++) {
|
||||
for(i=0; i<3; i++) {
|
||||
for(SPDR = 0x00; !(SPSR & _BV(SPIF)); );
|
||||
}
|
||||
for(i=0; i<1; i++) {
|
||||
for(SPDR = 0xFF; !(SPSR & _BV(SPIF)); );
|
||||
}
|
||||
}
|
||||
}
|
||||
for (i = 0; i < 4; i++) { //Stop Frame
|
||||
for (SPDR = 0xFF; !(SPSR & _BV(SPIF)); );
|
||||
}
|
||||
delay(1); // One millisecond pause = latch
|
||||
lastByteTime = t; // Reset counter
|
||||
}
|
||||
}
|
||||
|
||||
switch (mode) {
|
||||
switch(mode) {
|
||||
|
||||
case MODE_HEADER:
|
||||
case MODE_HEADER:
|
||||
|
||||
// In header-seeking mode. Is there enough data to check?
|
||||
if (bytesBuffered >= HEADERSIZE) {
|
||||
// Indeed. Check for a 'magic word' match.
|
||||
for (i = 0; (i < MAGICSIZE) && (buffer[indexOut++] == magic[i++]););
|
||||
if (i == MAGICSIZE) {
|
||||
// Magic word matches. Now how about the checksum?
|
||||
hi = buffer[indexOut++];
|
||||
lo = buffer[indexOut++];
|
||||
chk = buffer[indexOut++];
|
||||
if (chk == (hi ^ lo ^ 0x55)) {
|
||||
// Checksum looks valid. Get 16-bit LED count, add 1
|
||||
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
|
||||
bytesRemaining = 4L * (256L * (long)hi + (long)lo) + 4L + (256L * (long)hi + (long)lo + 15) / 16;
|
||||
bytesBuffered -= 3;
|
||||
spiFlag = 0; // No data out yet
|
||||
mode = MODE_HOLD; // Proceed to latch wait mode
|
||||
digitalWrite(DATA_LED, data_in_led = !data_in_led);
|
||||
} else {
|
||||
// Checksum didn't match; search resumes after magic word.
|
||||
indexOut -= 3; // Rewind
|
||||
}
|
||||
} // else no header match. Resume at first mismatched byte.
|
||||
bytesBuffered -= i;
|
||||
}
|
||||
break;
|
||||
|
||||
case MODE_HOLD:
|
||||
|
||||
// Ostensibly "waiting for the latch from the prior frame
|
||||
// to complete" mode, but may also revert to this mode when
|
||||
// underrun prevention necessitates a delay.
|
||||
|
||||
if ((micros() - startTime) < hold) break; // Still holding; keep buffering
|
||||
|
||||
// Latch/delay complete. Advance to data-issuing mode...
|
||||
LED_PORT &= ~LED_PIN; // LED off
|
||||
mode = MODE_DATA; // ...and fall through (no break):
|
||||
|
||||
case MODE_DATA:
|
||||
digitalWrite(SPI_LED, spi_out_led = !spi_out_led);
|
||||
while (spiFlag && !(SPSR & _BV(SPIF))); // Wait for prior byte
|
||||
if (bytesRemaining > 0) {
|
||||
if (bytesBuffered > 0) {
|
||||
SPDR = buffer[indexOut++]; // Issue next byte
|
||||
bytesBuffered--;
|
||||
bytesRemaining--;
|
||||
spiFlag = 1;
|
||||
// In header-seeking mode. Is there enough data to check?
|
||||
if(bytesBuffered >= HEADERSIZE) {
|
||||
// Indeed. Check for a 'magic word' match.
|
||||
for(i=0; (i<MAGICSIZE) && (buffer[indexOut++] == magic[i++]););
|
||||
if(i == MAGICSIZE) {
|
||||
// Magic word matches. Now how about the checksum?
|
||||
hi = buffer[indexOut++];
|
||||
lo = buffer[indexOut++];
|
||||
chk = buffer[indexOut++];
|
||||
if(chk == (hi ^ lo ^ 0x55)) {
|
||||
// Checksum looks valid. Get 16-bit LED count, add 1
|
||||
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
|
||||
bytesRemaining = 4L * (256L * (long)hi + (long)lo) +4L + (256L *(long)hi + (long)lo +15)/16;
|
||||
bytesBuffered -= 3;
|
||||
spiFlag = 0; // No data out yet
|
||||
mode = MODE_HOLD; // Proceed to latch wait mode
|
||||
digitalWrite(DATA_LED, data_in_led = !data_in_led);
|
||||
} else {
|
||||
// Checksum didn't match; search resumes after magic word.
|
||||
indexOut -= 3; // Rewind
|
||||
}
|
||||
// If serial buffer is threatening to underrun, start
|
||||
// introducing progressively longer pauses to allow more
|
||||
// data to arrive (up to a point).
|
||||
if ((bytesBuffered < 32) && (bytesRemaining > bytesBuffered)) {
|
||||
startTime = micros();
|
||||
hold = 100 + (32 - bytesBuffered) * 10;
|
||||
mode = MODE_HOLD;
|
||||
}
|
||||
} else {
|
||||
// End of data -- issue latch:
|
||||
startTime = micros();
|
||||
hold = 1000; // Latch duration = 1000 uS
|
||||
LED_PORT |= LED_PIN; // LED on
|
||||
mode = MODE_HEADER; // Begin next header search
|
||||
} // else no header match. Resume at first mismatched byte.
|
||||
bytesBuffered -= i;
|
||||
}
|
||||
break;
|
||||
|
||||
case MODE_HOLD:
|
||||
|
||||
// Ostensibly "waiting for the latch from the prior frame
|
||||
// to complete" mode, but may also revert to this mode when
|
||||
// underrun prevention necessitates a delay.
|
||||
|
||||
if((micros() - startTime) < hold) break; // Still holding; keep buffering
|
||||
|
||||
// Latch/delay complete. Advance to data-issuing mode...
|
||||
LED_PORT &= ~LED_PIN; // LED off
|
||||
mode = MODE_DATA; // ...and fall through (no break):
|
||||
|
||||
case MODE_DATA:
|
||||
digitalWrite(SPI_LED, spi_out_led = !spi_out_led);
|
||||
while(spiFlag && !(SPSR & _BV(SPIF))); // Wait for prior byte
|
||||
if(bytesRemaining > 0) {
|
||||
if(bytesBuffered > 0) {
|
||||
SPDR = buffer[indexOut++]; // Issue next byte
|
||||
bytesBuffered--;
|
||||
bytesRemaining--;
|
||||
spiFlag = 1;
|
||||
}
|
||||
// If serial buffer is threatening to underrun, start
|
||||
// introducing progressively longer pauses to allow more
|
||||
// data to arrive (up to a point).
|
||||
if((bytesBuffered < 32) && (bytesRemaining > bytesBuffered)) {
|
||||
startTime = micros();
|
||||
hold = 100 + (32 - bytesBuffered) * 10;
|
||||
mode = MODE_HOLD;
|
||||
}
|
||||
} else {
|
||||
// End of data -- issue latch:
|
||||
startTime = micros();
|
||||
hold = 1000; // Latch duration = 1000 uS
|
||||
LED_PORT |= LED_PIN; // LED on
|
||||
mode = MODE_HEADER; // Begin next header search
|
||||
}
|
||||
} // end switch
|
||||
} // end for(;;)
|
||||
}
|
||||
@ -271,4 +270,4 @@ void setup()
|
||||
void loop()
|
||||
{
|
||||
// Not used. See note in setup() function.
|
||||
}
|
||||
}
|
133
assets/firmware/arduino/tpm2/tpm2.ino
Normal file
133
assets/firmware/arduino/tpm2/tpm2.ino
Normal file
@ -0,0 +1,133 @@
|
||||
/**
|
||||
* This is a demo implemention how to use tpm2 protovol on arduino
|
||||
*
|
||||
* code is taken from: https://github.com/JonasVanGool/TPM2-ARDUINO
|
||||
*/
|
||||
|
||||
|
||||
#include <FastLED.h>
|
||||
|
||||
#define START_BYTE 0xC9
|
||||
#define STOP_BYTE 0x36
|
||||
#define DATA_FRAME 0xDA
|
||||
#define COMMAND 0xC0
|
||||
#define REQ_RESP 0xAA
|
||||
|
||||
#define BAUDRATE 115200
|
||||
|
||||
#define DATA_PIN 12
|
||||
#define MAX_NR_LEDS 200
|
||||
|
||||
CRGB leds[MAX_NR_LEDS];
|
||||
|
||||
enum States {
|
||||
ST_START,
|
||||
ST_PACKET_TYPE,
|
||||
ST_PAYLOAD_SIZE,
|
||||
ST_USER_DATA,
|
||||
ST_END
|
||||
};
|
||||
|
||||
States activeState = ST_START;
|
||||
uint8_t byteRead = 0;
|
||||
uint8_t payloadHighByte = 0;
|
||||
uint8_t payloadLowByte = 0;
|
||||
int payloadSize = 0;
|
||||
int bytesRead = 0;
|
||||
int nrOfLeds = 0;
|
||||
|
||||
boolean flag = false;
|
||||
void setup() {
|
||||
// Init leds
|
||||
for (int i = 0; i < MAX_NR_LEDS; i++)
|
||||
leds[i] = 0;
|
||||
// Start serial device
|
||||
Serial.begin(BAUDRATE);
|
||||
// Set time out for readBytes function
|
||||
Serial.setTimeout(100);
|
||||
// init fastLED Library
|
||||
LEDS.addLeds<WS2812B, DATA_PIN, RGB>(leds, MAX_NR_LEDS);
|
||||
// setting brightness to 50% brightness
|
||||
LEDS.setBrightness(128);
|
||||
// debug led
|
||||
pinMode(13, OUTPUT);
|
||||
|
||||
|
||||
for(;;) {
|
||||
if (Serial.available() > 0) {
|
||||
// process TPM2 protocol
|
||||
switch (activeState) {
|
||||
//------------------------------//
|
||||
// START //
|
||||
//------------------------------//
|
||||
case ST_START:
|
||||
// read incomming byte
|
||||
byteRead = Serial.read();
|
||||
if (byteRead == START_BYTE) {
|
||||
activeState = ST_PACKET_TYPE;
|
||||
}
|
||||
break;
|
||||
//------------------------------//
|
||||
// PACKET_TYPE //
|
||||
//------------------------------//
|
||||
case ST_PACKET_TYPE:
|
||||
// read incomming byte
|
||||
byteRead = Serial.read();
|
||||
if (byteRead == DATA_FRAME) {
|
||||
activeState = ST_PAYLOAD_SIZE;
|
||||
} else {
|
||||
activeState = ST_START;
|
||||
Serial.flush();
|
||||
}
|
||||
break;
|
||||
//------------------------------//
|
||||
// PAYLOAD_SIZE //
|
||||
//------------------------------//
|
||||
case ST_PAYLOAD_SIZE:
|
||||
payloadHighByte = Serial.read();
|
||||
while (Serial.available() == 0) {}
|
||||
payloadLowByte = Serial.read();
|
||||
payloadSize = (payloadHighByte << 8) + payloadLowByte;
|
||||
nrOfLeds = payloadSize / 3;
|
||||
if (nrOfLeds <= MAX_NR_LEDS) {
|
||||
activeState = ST_USER_DATA;
|
||||
} else {
|
||||
activeState = ST_START;
|
||||
Serial.flush();
|
||||
}
|
||||
break;
|
||||
//------------------------------//
|
||||
// USER_DATA //
|
||||
//------------------------------//
|
||||
case ST_USER_DATA:
|
||||
bytesRead = Serial.readBytes((char *)leds, payloadSize);
|
||||
LEDS.show();
|
||||
if (bytesRead == payloadSize) {
|
||||
activeState = ST_END;
|
||||
} else {
|
||||
activeState = ST_START;
|
||||
Serial.flush();
|
||||
}
|
||||
break;
|
||||
//------------------------------//
|
||||
// END //
|
||||
//------------------------------//
|
||||
case ST_END:
|
||||
// read incomming byte
|
||||
byteRead = Serial.read();
|
||||
if (byteRead == STOP_BYTE) {
|
||||
activeState = ST_START;
|
||||
} else {
|
||||
activeState = ST_START;
|
||||
Serial.flush();
|
||||
}
|
||||
break;
|
||||
default: break;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void loop() {
|
||||
}
|
@ -101,7 +101,7 @@
|
||||
<div class="panel panel-primary">
|
||||
<div class="panel-heading headcollapse" data-toggle="collapse" data-parent="#accordion" data-target="#collapse4">
|
||||
<h4 class="panel-title">
|
||||
<a><i class="fa fa-wrench fa-fw"></i><span data-i18n="conf_leds_layout_generatedconf">Generated/Actual LED Configuration</span></a>
|
||||
<a><i class="fa fa-wrench fa-fw"></i><span data-i18n="conf_leds_layout_generatedconf">Generated/Current LED Configuration</span></a>
|
||||
</h4>
|
||||
</div>
|
||||
<div id="collapse4" class="panel-collapse collapse in">
|
||||
|
@ -22,6 +22,12 @@ $(document).ready( function() {
|
||||
parsedServerInfoJSON = event.response;
|
||||
currentVersion = parsedServerInfoJSON.info.hyperion[0].version;
|
||||
cleanCurrentVersion = currentVersion.replace(/\./g, '');
|
||||
|
||||
// ToDo lock config menu and display appropriate message
|
||||
if (! parsedServerInfoJSON.info.hyperion[0].config_writeable)
|
||||
{
|
||||
console.log("ATTENTION config is not writable");
|
||||
}
|
||||
|
||||
if (parsedServerInfoJSON.info.hyperion[0].config_modified)
|
||||
$("#hyperion_reload_notify").fadeIn("fast");
|
||||
|
@ -472,11 +472,8 @@ $(document).ready(function() {
|
||||
|
||||
// ------------------------------------------------------------------
|
||||
$("#leds_custom_save").off().on("click", function() {
|
||||
function createLedConfig(){
|
||||
var string = '{"leds" :'+$("#ledconfig").val()+'}';
|
||||
}
|
||||
if (validateText())
|
||||
requestWriteConfig(JSON.parse(createLedConfig()));
|
||||
requestWriteConfig(JSON.parse('{"leds" :'+$("#ledconfig").val()+'}'));
|
||||
});
|
||||
|
||||
// ------------------------------------------------------------------
|
||||
|
@ -30,7 +30,7 @@ if (candles == "list") and (type(ledlist) is str):
|
||||
if (i<hyperion.ledCount):
|
||||
candlelist += (i,)
|
||||
elif (candles == "list") and (type(ledlist) is list):
|
||||
for s in (ledlist):
|
||||
for s in (ledlist):
|
||||
i = int(s)
|
||||
if (i<hyperion.ledCount):
|
||||
candlelist += (i,)
|
||||
|
@ -6,6 +6,7 @@
|
||||
|
||||
// QT includes
|
||||
#include <QObject>
|
||||
#include <QString>
|
||||
#include <QTimer>
|
||||
#include <QSize>
|
||||
#include <QJsonObject>
|
||||
@ -84,7 +85,7 @@ public:
|
||||
///
|
||||
void freeObjects();
|
||||
|
||||
static Hyperion* initInstance(const QJsonObject& qjsonConfig, const std::string configFile);
|
||||
static Hyperion* initInstance(const QJsonObject& qjsonConfig, const QString configFile);
|
||||
static Hyperion* getInstance();
|
||||
|
||||
///
|
||||
@ -140,7 +141,7 @@ public:
|
||||
|
||||
/// get filename of configfile
|
||||
/// @return the current config filename
|
||||
std::string getConfigFileName() { return _configFile; };
|
||||
std::string getConfigFileName() { return _configFile.toStdString(); };
|
||||
|
||||
/// register a input source to a priority channel
|
||||
/// @param name uniq name of input source
|
||||
@ -180,6 +181,8 @@ public:
|
||||
|
||||
bool configModified();
|
||||
|
||||
bool configWriteable();
|
||||
|
||||
public slots:
|
||||
///
|
||||
/// Writes a single color to all the leds for the given time and priority
|
||||
@ -314,7 +317,7 @@ private:
|
||||
///
|
||||
/// @param[in] qjsonConfig The Json configuration
|
||||
///
|
||||
Hyperion(const QJsonObject& qjsonConfig, const std::string configFile);
|
||||
Hyperion(const QJsonObject& qjsonConfig, const QString configFile);
|
||||
|
||||
/// The specifiation of the led frame construction and picture integration
|
||||
LedString _ledString;
|
||||
@ -348,7 +351,7 @@ private:
|
||||
const QJsonObject& _qjsonConfig;
|
||||
|
||||
// the name of config file
|
||||
std::string _configFile;
|
||||
QString _configFile;
|
||||
|
||||
/// The timer for handling priority channel timeouts
|
||||
QTimer _timer;
|
||||
|
@ -12,6 +12,7 @@
|
||||
#include <QStringList>
|
||||
#include <QCryptographicHash>
|
||||
#include <QFile>
|
||||
#include <QFileInfo>
|
||||
|
||||
// hyperion include
|
||||
#include <hyperion/Hyperion.h>
|
||||
@ -32,7 +33,7 @@
|
||||
|
||||
Hyperion* Hyperion::_hyperion = nullptr;
|
||||
|
||||
Hyperion* Hyperion::initInstance(const QJsonObject& qjsonConfig, const std::string configFile) // REMOVE jsonConfig variable when the conversion from jsonCPP to QtJSON is finished
|
||||
Hyperion* Hyperion::initInstance(const QJsonObject& qjsonConfig, const QString configFile) // REMOVE jsonConfig variable when the conversion from jsonCPP to QtJSON is finished
|
||||
{
|
||||
if ( Hyperion::_hyperion != nullptr )
|
||||
throw std::runtime_error("Hyperion::initInstance can be called only one time");
|
||||
@ -514,7 +515,7 @@ MessageForwarder * Hyperion::getForwarder()
|
||||
return _messageForwarder;
|
||||
}
|
||||
|
||||
Hyperion::Hyperion(const QJsonObject &qjsonConfig, const std::string configFile)
|
||||
Hyperion::Hyperion(const QJsonObject &qjsonConfig, const QString configFile)
|
||||
: _ledString(createLedString(qjsonConfig["leds"], createColorOrder(qjsonConfig["device"].toObject())))
|
||||
, _ledStringClone(createLedStringClone(qjsonConfig["leds"], createColorOrder(qjsonConfig["device"].toObject())))
|
||||
, _muxer(_ledString.leds().size())
|
||||
@ -582,6 +583,7 @@ Hyperion::Hyperion(const QJsonObject &qjsonConfig, const std::string configFile)
|
||||
Debug(_log,"configured leds: %d hw leds: %d", getLedCount(), _hwLedCount);
|
||||
WarningIf(hwLedCount < getLedCount(), _log, "more leds configured than available. check 'ledCount' in 'device' section");
|
||||
|
||||
WarningIf(!configWriteable(), _log, "Your config is not writeable - you won't be able to use the web ui for configuration.");
|
||||
// initialize hash of current config
|
||||
configModified();
|
||||
|
||||
@ -618,7 +620,7 @@ unsigned Hyperion::getLedCount() const
|
||||
bool Hyperion::configModified()
|
||||
{
|
||||
bool isModified = false;
|
||||
QFile f(_configFile.c_str());
|
||||
QFile f(_configFile);
|
||||
if (f.open(QFile::ReadOnly))
|
||||
{
|
||||
QCryptographicHash hash(QCryptographicHash::Sha1);
|
||||
@ -639,6 +641,14 @@ bool Hyperion::configModified()
|
||||
return isModified;
|
||||
}
|
||||
|
||||
bool Hyperion::configWriteable()
|
||||
{
|
||||
QFile file(_configFile);
|
||||
QFileInfo fileInfo(file);
|
||||
return fileInfo.isWritable() && fileInfo.isReadable();
|
||||
}
|
||||
|
||||
|
||||
void Hyperion::registerPriority(const std::string name, const int priority)
|
||||
{
|
||||
Info(_log, "Register new input source named '%s' for priority channel '%d'", name.c_str(), priority );
|
||||
|
@ -476,7 +476,8 @@
|
||||
"priority" :
|
||||
{
|
||||
"type" : "integer",
|
||||
"minimum" : 0,
|
||||
"minimum" : 2,
|
||||
"maximum" : 2000000000,
|
||||
"title" : "edt_conf_general_priority_title",
|
||||
"default" : 900,
|
||||
"propertyOrder" : 9
|
||||
@ -617,7 +618,8 @@
|
||||
{
|
||||
"type" : "integer",
|
||||
"title" : "edt_conf_general_priority_title",
|
||||
"minimum" : 0,
|
||||
"minimum" : 2,
|
||||
"maximum" : 2000000000,
|
||||
"default" : 890
|
||||
},
|
||||
"cropLeft" :
|
||||
@ -974,7 +976,8 @@
|
||||
{
|
||||
"type" : "integer",
|
||||
"title" : "edt_conf_general_priority_title",
|
||||
"minimum" : 0,
|
||||
"minimum" : 2,
|
||||
"maximum" : 2000000000,
|
||||
"default" : 800,
|
||||
"propertyOrder" : 3
|
||||
}
|
||||
@ -1014,7 +1017,8 @@
|
||||
{
|
||||
"type" : "integer",
|
||||
"title" : "edt_conf_general_priority_title",
|
||||
"minimum" : 0,
|
||||
"minimum" : 2,
|
||||
"maximum" : 2000000000,
|
||||
"default" : 800,
|
||||
"propertyOrder" : 4
|
||||
},
|
||||
|
@ -841,6 +841,7 @@ void JsonClientConnection::handleServerInfoCommand(const QJsonObject&, const QSt
|
||||
ver["build"] = QString(HYPERION_BUILD_ID);
|
||||
ver["time"] = QString(__DATE__ " " __TIME__);
|
||||
ver["config_modified"] = _hyperion->configModified();
|
||||
ver["config_writeable"] = _hyperion->configWriteable();
|
||||
|
||||
hyperion.append(ver);
|
||||
info["hyperion"] = hyperion;
|
||||
|
@ -2,6 +2,7 @@
|
||||
|
||||
LedDeviceAdalight::LedDeviceAdalight(const QJsonObject &deviceConfig)
|
||||
: ProviderRs232()
|
||||
, _headerSize(6)
|
||||
, _ligthBerryAPA102Mode(false)
|
||||
{
|
||||
_deviceReady = init(deviceConfig);
|
||||
@ -18,7 +19,6 @@ bool LedDeviceAdalight::init(const QJsonObject &deviceConfig)
|
||||
_ligthBerryAPA102Mode = deviceConfig["lightberry_apa102_mode"].toBool(false);
|
||||
|
||||
// create ledBuffer
|
||||
unsigned int bufferSize = 6; // 6 bytes header
|
||||
unsigned int totalLedCount = _ledCount;
|
||||
|
||||
if (_ligthBerryAPA102Mode)
|
||||
@ -26,25 +26,30 @@ bool LedDeviceAdalight::init(const QJsonObject &deviceConfig)
|
||||
const unsigned int startFrameSize = 4;
|
||||
const unsigned int bytesPerRGBLed = 4;
|
||||
const unsigned int endFrameSize = std::max<unsigned int>(((_ledCount + 15) / 16), bytesPerRGBLed);
|
||||
bufferSize += (_ledCount * bytesPerRGBLed) + startFrameSize + endFrameSize ;
|
||||
_ledBuffer.resize(_headerSize + (_ledCount * bytesPerRGBLed) + startFrameSize + endFrameSize, 0x00);
|
||||
|
||||
// init constant data values
|
||||
for (signed iLed=1; iLed<=_ledCount; iLed++)
|
||||
{
|
||||
_ledBuffer[iLed*4+_headerSize] = 0xFF;
|
||||
}
|
||||
Debug( _log, "Adalight driver with activated LightBerry APA102 mode");
|
||||
}
|
||||
else
|
||||
{
|
||||
totalLedCount -= 1;
|
||||
bufferSize += _ledRGBCount;
|
||||
_ledBuffer.resize(_headerSize + _ledRGBCount, 0x00);
|
||||
}
|
||||
|
||||
_ledBuffer.resize(bufferSize, 0x00);
|
||||
_ledBuffer[0] = 'A';
|
||||
_ledBuffer[1] = 'd';
|
||||
_ledBuffer[2] = 'a';
|
||||
_ledBuffer[3] = (((unsigned int)(totalLedCount)) >> 8) & 0xFF; // LED count high byte
|
||||
_ledBuffer[4] = ((unsigned int)(totalLedCount)) & 0xFF; // LED count low byte
|
||||
_ledBuffer[3] = (totalLedCount >> 8) & 0xFF; // LED count high byte
|
||||
_ledBuffer[4] = totalLedCount & 0xFF; // LED count low byte
|
||||
_ledBuffer[5] = _ledBuffer[3] ^ _ledBuffer[4] ^ 0x55; // Checksum
|
||||
|
||||
Debug( _log, "Adalight header for %d leds: %c%c%c 0x%02x 0x%02x 0x%02x", _ledCount,
|
||||
_ledBuffer[0], _ledBuffer[1], _ledBuffer[2], _ledBuffer[3], _ledBuffer[4], _ledBuffer[5]
|
||||
);
|
||||
_ledBuffer[0], _ledBuffer[1], _ledBuffer[2], _ledBuffer[3], _ledBuffer[4], _ledBuffer[5] );
|
||||
|
||||
return true;
|
||||
}
|
||||
@ -56,15 +61,14 @@ int LedDeviceAdalight::write(const std::vector<ColorRgb> & ledValues)
|
||||
for (signed iLed=1; iLed<=_ledCount; iLed++)
|
||||
{
|
||||
const ColorRgb& rgb = ledValues[iLed-1];
|
||||
_ledBuffer[iLed*4+6] = 0xFF;
|
||||
_ledBuffer[iLed*4+1+6] = rgb.red;
|
||||
_ledBuffer[iLed*4+2+6] = rgb.green;
|
||||
_ledBuffer[iLed*4+3+6] = rgb.blue;
|
||||
_ledBuffer[iLed*4+7] = rgb.red;
|
||||
_ledBuffer[iLed*4+8] = rgb.green;
|
||||
_ledBuffer[iLed*4+9] = rgb.blue;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
memcpy(6 + _ledBuffer.data(), ledValues.data(), ledValues.size() * 3);
|
||||
memcpy(_headerSize + _ledBuffer.data(), ledValues.data(), ledValues.size() * 3);
|
||||
}
|
||||
|
||||
return writeBytes(_ledBuffer.size(), _ledBuffer.data());
|
||||
|
@ -31,6 +31,7 @@ private:
|
||||
///
|
||||
virtual int write(const std::vector<ColorRgb> & ledValues);
|
||||
|
||||
const short _headerSize;
|
||||
bool _ligthBerryAPA102Mode;
|
||||
};
|
||||
|
||||
|
@ -369,7 +369,9 @@ void LedDevicePhilipsHue::saveStates(unsigned int nLights)
|
||||
if (error.error != QJsonParseError::NoError)
|
||||
{
|
||||
// Error occured, break loop.
|
||||
Error(_log, "saveStates(nLights=%d): got invalid response from light %s.", nLights, getUrl(getRoute(lightIds.at(i))).toStdString().c_str());
|
||||
Error(_log, "saveStates(nLights=%d): got invalid response from light %s. (error:%s, offset:%d)",
|
||||
nLights, getUrl(getRoute(lightIds.at(i))).toStdString().c_str(), error.errorString().toLocal8Bit().constData(), error.offset );
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -16,11 +16,11 @@ bool LedDeviceTpm2::init(const QJsonObject &deviceConfig)
|
||||
{
|
||||
ProviderRs232::init(deviceConfig);
|
||||
|
||||
_ledBuffer.resize(5 + 3*_ledCount);
|
||||
_ledBuffer.resize(5 + _ledRGBCount);
|
||||
_ledBuffer[0] = 0xC9; // block-start byte
|
||||
_ledBuffer[1] = 0xDA; // DATA frame
|
||||
_ledBuffer[2] = ((3 * _ledCount) >> 8) & 0xFF; // frame size high byte
|
||||
_ledBuffer[3] = (3 * _ledCount) & 0xFF; // frame size low byte
|
||||
_ledBuffer[2] = (_ledRGBCount >> 8) & 0xFF; // frame size high byte
|
||||
_ledBuffer[3] = _ledRGBCount & 0xFF; // frame size low byte
|
||||
_ledBuffer.back() = 0x36; // block-end byte
|
||||
|
||||
return true;
|
||||
|
@ -17,7 +17,7 @@
|
||||
"delayAfterConnect": {
|
||||
"type": "integer",
|
||||
"title":"edt_dev_spec_delayAfterConnect_title",
|
||||
"default": 250,
|
||||
"default": 1500,
|
||||
"append" : "ms",
|
||||
"propertyOrder" : 3
|
||||
},
|
||||
|
@ -69,12 +69,12 @@ HyperionDaemon::HyperionDaemon(QString configFile, QObject *parent)
|
||||
}
|
||||
else
|
||||
{
|
||||
WarningIf(_qconfig.contains("logger"), Logger::getInstance("LOGGER"), "Logger settings overriden by command line argument");
|
||||
WarningIf(_qconfig.contains("logger"), Logger::getInstance("LOGGER"), "Logger settings overridden by command line argument");
|
||||
}
|
||||
|
||||
_hyperion = Hyperion::initInstance(_qconfig, configFile.toStdString());
|
||||
_hyperion = Hyperion::initInstance(_qconfig, configFile);
|
||||
|
||||
Info(_log, "Hyperion initialised");
|
||||
Info(_log, "Hyperion initialized");
|
||||
}
|
||||
|
||||
HyperionDaemon::~HyperionDaemon()
|
||||
|
Loading…
Reference in New Issue
Block a user