Moved color logic to lamp class.

Former-commit-id: f450eebc8c9d0f29dc053f2115dac6576a5fa591
This commit is contained in:
Tim Niggemann 2014-07-16 20:22:37 +02:00
parent f0d2c15aeb
commit dbd7a86665
3 changed files with 208 additions and 201 deletions

View File

@ -164,7 +164,7 @@ LedDevice * LedDeviceFactory::construct(const Json::Value & deviceConfig)
else if (type == "philipshue") else if (type == "philipshue")
{ {
const std::string output = deviceConfig["output"].asString(); const std::string output = deviceConfig["output"].asString();
const bool switchOffOnBlack = deviceConfig.get("switch_off_on_black", false).asBool(); const bool switchOffOnBlack = deviceConfig.get("switchOffOnBlack", true).asBool();
device = new LedDevicePhilipsHue(output, switchOffOnBlack); device = new LedDevicePhilipsHue(output, switchOffOnBlack);
} }
else if (type == "test") else if (type == "test")

View File

@ -12,7 +12,125 @@
#include <set> #include <set>
const ColorPoint LedDevicePhilipsHue::BLACK = { 0.0f, 0.0f, 0.0f }; bool operator ==(CiColor p1, CiColor p2) {
return (p1.x == p2.x) && (p1.y == p2.y) && (p1.bri == p2.bri);
}
bool operator !=(CiColor p1, CiColor p2) {
return !(p1 == p2);
}
PhilipsHueLamp::PhilipsHueLamp(unsigned int id, QString originalState, QString modelId) :
id(id), originalState(originalState) {
// Hue system model ids.
const std::set<QString> HUE_BULBS_MODEL_IDS = { "LCT001", "LCT002", "LCT003" };
const std::set<QString> LIVING_COLORS_MODEL_IDS = { "LLC001", "LLC005", "LLC006", "LLC007", "LLC011", "LLC012",
"LLC013", "LST001" };
// Find id in the sets and set the appropiate color space.
if (HUE_BULBS_MODEL_IDS.find(modelId) != HUE_BULBS_MODEL_IDS.end()) {
colorSpace.red = {0.675f, 0.322f};
colorSpace.green = {0.4091f, 0.518f};
colorSpace.blue = {0.167f, 0.04f};
} else if (LIVING_COLORS_MODEL_IDS.find(modelId) != LIVING_COLORS_MODEL_IDS.end()) {
colorSpace.red = {0.703f, 0.296f};
colorSpace.green = {0.214f, 0.709f};
colorSpace.blue = {0.139f, 0.081f};
} else {
colorSpace.red = {1.0f, 0.0f};
colorSpace.green = {0.0f, 1.0f};
colorSpace.blue = {0.0f, 0.0f};
}
// Initialize black color.
black = rgbToCiColor(0.0f, 0.0f, 0.0f);
// Initialize color with black
color = {black.x, black.y, black.bri};
}
float PhilipsHueLamp::crossProduct(CiColor p1, CiColor p2) {
return p1.x * p2.y - p1.y * p2.x;
}
bool PhilipsHueLamp::isPointInLampsReach(CiColor p) {
CiColor v1 = { colorSpace.green.x - colorSpace.red.x, colorSpace.green.y - colorSpace.red.y };
CiColor v2 = { colorSpace.blue.x - colorSpace.red.x, colorSpace.blue.y - colorSpace.red.y };
CiColor q = { p.x - colorSpace.red.x, p.y - colorSpace.red.y };
float s = crossProduct(q, v2) / crossProduct(v1, v2);
float t = crossProduct(v1, q) / crossProduct(v1, v2);
if ((s >= 0.0f) && (t >= 0.0f) && (s + t <= 1.0f)) {
return true;
}
return false;
}
CiColor PhilipsHueLamp::getClosestPointToPoint(CiColor a, CiColor b, CiColor p) {
CiColor AP = { p.x - a.x, p.y - a.y };
CiColor AB = { b.x - a.x, b.y - a.y };
float ab2 = AB.x * AB.x + AB.y * AB.y;
float ap_ab = AP.x * AB.x + AP.y * AB.y;
float t = ap_ab / ab2;
if (t < 0.0f) {
t = 0.0f;
} else if (t > 1.0f) {
t = 1.0f;
}
return {a.x + AB.x * t, a.y + AB.y * t};
}
float PhilipsHueLamp::getDistanceBetweenTwoPoints(CiColor p1, CiColor p2) {
// Horizontal difference.
float dx = p1.x - p2.x;
// Vertical difference.
float dy = p1.y - p2.y;
// Absolute value.
return sqrt(dx * dx + dy * dy);
}
CiColor PhilipsHueLamp::rgbToCiColor(float red, float green, float blue) {
// Apply gamma correction.
float r = (red > 0.04045f) ? powf((red + 0.055f) / (1.0f + 0.055f), 2.4f) : (red / 12.92f);
float g = (green > 0.04045f) ? powf((green + 0.055f) / (1.0f + 0.055f), 2.4f) : (green / 12.92f);
float b = (blue > 0.04045f) ? powf((blue + 0.055f) / (1.0f + 0.055f), 2.4f) : (blue / 12.92f);
// Convert to XYZ space.
float X = r * 0.649926f + g * 0.103455f + b * 0.197109f;
float Y = r * 0.234327f + g * 0.743075f + b * 0.022598f;
float Z = r * 0.0000000f + g * 0.053077f + b * 1.035763f;
// Convert to x,y space.
float cx = X / (X + Y + Z);
float cy = Y / (X + Y + Z);
if (isnan(cx)) {
cx = 0.0f;
}
if (isnan(cy)) {
cy = 0.0f;
}
// Brightness is simply Y in the XYZ space.
CiColor xy = { cx, cy, Y };
// Check if the given XY value is within the color reach of our lamps.
if (!isPointInLampsReach(xy)) {
// It seems the color is out of reach let's find the closes color we can produce with our lamp and send this XY value out.
CiColor pAB = getClosestPointToPoint(colorSpace.red, colorSpace.green, xy);
CiColor pAC = getClosestPointToPoint(colorSpace.blue, colorSpace.red, xy);
CiColor pBC = getClosestPointToPoint(colorSpace.green, colorSpace.blue, xy);
// Get the distances per point and see which point is closer to our Point.
float dAB = getDistanceBetweenTwoPoints(xy, pAB);
float dAC = getDistanceBetweenTwoPoints(xy, pAC);
float dBC = getDistanceBetweenTwoPoints(xy, pBC);
float lowest = dAB;
CiColor closestPoint = pAB;
if (dAC < lowest) {
lowest = dAC;
closestPoint = pAC;
}
if (dBC < lowest) {
lowest = dBC;
closestPoint = pBC;
}
// Change the xy value to a value which is within the reach of the lamp.
xy.x = closestPoint.x;
xy.y = closestPoint.y;
}
return xy;
}
LedDevicePhilipsHue::LedDevicePhilipsHue(const std::string& output, bool switchOffOnBlack) : LedDevicePhilipsHue::LedDevicePhilipsHue(const std::string& output, bool switchOffOnBlack) :
host(output.c_str()), username("newdeveloper"), switchOffOnBlack(switchOffOnBlack) { host(output.c_str()), username("newdeveloper"), switchOffOnBlack(switchOffOnBlack) {
@ -41,25 +159,35 @@ int LedDevicePhilipsHue::write(const std::vector<ColorRgb> & ledValues) {
unsigned int idx = 0; unsigned int idx = 0;
for (const ColorRgb& color : ledValues) { for (const ColorRgb& color : ledValues) {
// Get lamp. // Get lamp.
HueLamp& lamp = lamps.at(idx); PhilipsHueLamp& lamp = lamps.at(idx);
// Scale colors from [0, 255] to [0, 1] and convert to xy space. // Scale colors from [0, 255] to [0, 1] and convert to xy space.
ColorPoint xy = rgbToXYBrightness(color.red / 255.0f, color.green / 255.0f, color.blue / 255.0f, lamp); CiColor xy = lamp.rgbToCiColor(color.red / 255.0f, color.green / 255.0f, color.blue / 255.0f);
// Switch lamp off if switchOffOnBlack is enabled and the lamp is currently on.
if (switchOffOnBlack && xy == BLACK && lamp.color != BLACK) {
put(getStateRoute(lamp.id), QString("{\"on\": false}"));
}
// Write color if color has been changed. // Write color if color has been changed.
else if (xy != lamp.color) { if (xy != lamp.color) {
// Switch on if the lamp has been previously switched off. // Switch on if the lamp has been previously switched off.
if (switchOffOnBlack && lamp.color == BLACK) { if (switchOffOnBlack && lamp.color == lamp.black) {
put(getStateRoute(lamp.id), QString("{\"on\": true}"));
} }
// Send adjust color and brightness command in JSON format. // Send adjust color and brightness command in JSON format.
put(getStateRoute(lamp.id), put(getStateRoute(lamp.id),
QString("{\"xy\": [%1, %2], \"bri\": %3}").arg(xy.x).arg(xy.y).arg(qRound(xy.bri * 255.0f))); QString("{\"xy\": [%1, %2], \"bri\": %3}").arg(xy.x).arg(xy.y).arg(qRound(xy.bri * 255.0f)));
// Remember written color.
lamp.color = xy;
} }
// Switch lamp off if switchOffOnBlack is enabled and the lamp is currently on.
if (switchOffOnBlack) {
// From black to a color.
if (lamp.color == lamp.black && xy != lamp.black) {
put(getStateRoute(lamp.id), QString("{\"on\": true}"));
std::cout << "switchon" << std::endl;
}
// From a color to black.
else if (lamp.color != lamp.black && xy == lamp.black) {
put(getStateRoute(lamp.id), QString("{\"on\": false}"));
std::cout << "switchoff" << std::endl;
}
}
// Remember last color.
lamp.color = xy;
// Next light id. // Next light id.
idx++; idx++;
} }
@ -142,18 +270,18 @@ void LedDevicePhilipsHue::saveStates(unsigned int nLights) {
QString modelId = QString(writer.write(json["modelid"]).c_str()).trimmed().replace("\"", ""); QString modelId = QString(writer.write(json["modelid"]).c_str()).trimmed().replace("\"", "");
QString originalState = QString(writer.write(state).c_str()).trimmed(); QString originalState = QString(writer.write(state).c_str()).trimmed();
// Save state object. // Save state object.
lamps.push_back(HueLamp(i + 1, originalState, modelId)); lamps.push_back(PhilipsHueLamp(i + 1, originalState, modelId));
} }
} }
void LedDevicePhilipsHue::switchOn(unsigned int nLights) { void LedDevicePhilipsHue::switchOn(unsigned int nLights) {
for (HueLamp lamp : lamps) { for (PhilipsHueLamp lamp : lamps) {
put(getStateRoute(lamp.id), "{\"on\": true}"); put(getStateRoute(lamp.id), "{\"on\": true}");
} }
} }
void LedDevicePhilipsHue::restoreStates() { void LedDevicePhilipsHue::restoreStates() {
for (HueLamp lamp : lamps) { for (PhilipsHueLamp lamp : lamps) {
put(getStateRoute(lamp.id), lamp.originalState); put(getStateRoute(lamp.id), lamp.originalState);
} }
// Clear saved light states. // Clear saved light states.
@ -163,123 +291,3 @@ void LedDevicePhilipsHue::restoreStates() {
bool LedDevicePhilipsHue::areStatesSaved() { bool LedDevicePhilipsHue::areStatesSaved() {
return !lamps.empty(); return !lamps.empty();
} }
float LedDevicePhilipsHue::crossProduct(ColorPoint p1, ColorPoint p2) {
return p1.x * p2.y - p1.y * p2.x;
}
bool LedDevicePhilipsHue::isPointInLampsReach(HueLamp lamp, ColorPoint p) {
ColorTriangle& triangle = lamp.colorSpace;
ColorPoint v1 = { triangle.green.x - triangle.red.x, triangle.green.y - triangle.red.y };
ColorPoint v2 = { triangle.blue.x - triangle.red.x, triangle.blue.y - triangle.red.y };
ColorPoint q = { p.x - triangle.red.x, p.y - triangle.red.y };
float s = crossProduct(q, v2) / crossProduct(v1, v2);
float t = crossProduct(v1, q) / crossProduct(v1, v2);
if ((s >= 0.0f) && (t >= 0.0f) && (s + t <= 1.0f)) {
return true;
} else {
return false;
}
}
ColorPoint LedDevicePhilipsHue::getClosestPointToPoint(ColorPoint a, ColorPoint b, ColorPoint p) {
ColorPoint AP = { p.x - a.x, p.y - a.y };
ColorPoint AB = { b.x - a.x, b.y - a.y };
float ab2 = AB.x * AB.x + AB.y * AB.y;
float ap_ab = AP.x * AB.x + AP.y * AB.y;
float t = ap_ab / ab2;
if (t < 0.0f) {
t = 0.0f;
} else if (t > 1.0f) {
t = 1.0f;
}
return {a.x + AB.x * t, a.y + AB.y * t};
}
float LedDevicePhilipsHue::getDistanceBetweenTwoPoints(ColorPoint p1, ColorPoint p2) {
// Horizontal difference.
float dx = p1.x - p2.x;
// Vertical difference.
float dy = p1.y - p2.y;
// Absolute value.
return sqrt(dx * dx + dy * dy);
}
ColorPoint LedDevicePhilipsHue::rgbToXYBrightness(float red, float green, float blue, HueLamp lamp) {
// Apply gamma correction.
float r = (red > 0.04045f) ? powf((red + 0.055f) / (1.0f + 0.055f), 2.4f) : (red / 12.92f);
float g = (green > 0.04045f) ? powf((green + 0.055f) / (1.0f + 0.055f), 2.4f) : (green / 12.92f);
float b = (blue > 0.04045f) ? powf((blue + 0.055f) / (1.0f + 0.055f), 2.4f) : (blue / 12.92f);
// Convert to XYZ space.
float X = r * 0.649926f + g * 0.103455f + b * 0.197109f;
float Y = r * 0.234327f + g * 0.743075f + b * 0.022598f;
float Z = r * 0.0000000f + g * 0.053077f + b * 1.035763f;
// Convert to x,y space.
float cx = X / (X + Y + Z);
float cy = Y / (X + Y + Z);
if (isnan(cx)) {
cx = 0.0f;
}
if (isnan(cy)) {
cy = 0.0f;
}
// Brightness is simply Y in the XYZ space.
ColorPoint xy = { cx, cy, Y };
// Check if the given XY value is within the color reach of our lamps.
if (!isPointInLampsReach(lamp, xy)) {
// It seems the color is out of reach let's find the closes color we can produce with our lamp and send this XY value out.
ColorPoint pAB = getClosestPointToPoint(lamp.colorSpace.red, lamp.colorSpace.green, xy);
ColorPoint pAC = getClosestPointToPoint(lamp.colorSpace.blue, lamp.colorSpace.red, xy);
ColorPoint pBC = getClosestPointToPoint(lamp.colorSpace.green, lamp.colorSpace.blue, xy);
// Get the distances per point and see which point is closer to our Point.
float dAB = getDistanceBetweenTwoPoints(xy, pAB);
float dAC = getDistanceBetweenTwoPoints(xy, pAC);
float dBC = getDistanceBetweenTwoPoints(xy, pBC);
float lowest = dAB;
ColorPoint closestPoint = pAB;
if (dAC < lowest) {
lowest = dAC;
closestPoint = pAC;
}
if (dBC < lowest) {
lowest = dBC;
closestPoint = pBC;
}
// Change the xy value to a value which is within the reach of the lamp.
xy.x = closestPoint.x;
xy.y = closestPoint.y;
}
return xy;
}
HueLamp::HueLamp(unsigned int id, QString originalState, QString modelId) :
id(id), originalState(originalState) {
// Hue system model ids.
const std::set<QString> HUE_BULBS_MODEL_IDS = { "LCT001", "LCT002", "LCT003" };
const std::set<QString> LIVING_COLORS_MODEL_IDS = { "LLC001", "LLC005", "LLC006", "LLC007", "LLC011", "LLC012",
"LLC013", "LST001" };
// Find id in the sets and set the appropiate color space.
if (HUE_BULBS_MODEL_IDS.find(modelId) != HUE_BULBS_MODEL_IDS.end()) {
colorSpace.red = {0.675f, 0.322f};
colorSpace.green = {0.4091f, 0.518f};
colorSpace.blue = {0.167f, 0.04f};
} else if (LIVING_COLORS_MODEL_IDS.find(modelId) != LIVING_COLORS_MODEL_IDS.end()) {
colorSpace.red = {0.703f, 0.296f};
colorSpace.green = {0.214f, 0.709f};
colorSpace.blue = {0.139f, 0.081f};
} else {
colorSpace.red = {1.0f, 0.0f};
colorSpace.green = {0.0f, 1.0f};
colorSpace.blue = {0.0f, 0.0f};
}
// Initialize color with black
color = {0.0f, 0.0f, 0.0f};
}
bool operator ==(ColorPoint p1, ColorPoint p2) {
return (p1.x == p2.x) && (p1.y == p2.y) && (p1.bri == p2.bri);
}
bool operator !=(ColorPoint p1, ColorPoint p2) {
return !(p1 == p2);
}

View File

@ -15,30 +15,34 @@
/** /**
* A color point in the color space of the hue system. * A color point in the color space of the hue system.
*/ */
struct ColorPoint { struct CiColor {
/// X component.
float x; float x;
/// Y component.
float y; float y;
/// The brightness.
float bri; float bri;
}; };
bool operator==(ColorPoint p1, ColorPoint p2); bool operator==(CiColor p1, CiColor p2);
bool operator!=(ColorPoint p1, ColorPoint p2); bool operator!=(CiColor p1, CiColor p2);
/** /**
* Color triangle to define an available color space for the hue lamps. * Color triangle to define an available color space for the hue lamps.
*/ */
struct ColorTriangle { struct CiColorTriangle {
ColorPoint red, green, blue; CiColor red, green, blue;
}; };
/** /**
* Simple class to hold the id, the latest color, the color space and the original state. * Simple class to hold the id, the latest color, the color space and the original state.
*/ */
class HueLamp { class PhilipsHueLamp {
public: public:
unsigned int id; unsigned int id;
ColorPoint color; CiColor black;
ColorTriangle colorSpace; CiColor color;
CiColorTriangle colorSpace;
QString originalState; QString originalState;
/// ///
@ -50,7 +54,57 @@ public:
/// ///
/// @param modelId the model id of the hue lamp which is used to determine the color space /// @param modelId the model id of the hue lamp which is used to determine the color space
/// ///
HueLamp(unsigned int id, QString originalState, QString modelId); PhilipsHueLamp(unsigned int id, QString originalState, QString modelId);
///
/// Converts an RGB color to the Hue xy color space and brightness.
/// https://github.com/PhilipsHue/PhilipsHueSDK-iOS-OSX/blob/master/ApplicationDesignNotes/RGB%20to%20xy%20Color%20conversion.md
///
/// @param red the red component in [0, 1]
///
/// @param green the green component in [0, 1]
///
/// @param blue the blue component in [0, 1]
///
/// @return color point
///
CiColor rgbToCiColor(float red, float green, float blue);
///
/// @param p the color point to check
///
/// @return true if the color point is covered by the lamp color space
///
bool isPointInLampsReach(CiColor p);
///
/// @param p1 point one
///
/// @param p2 point tow
///
/// @return the cross product between p1 and p2
///
float crossProduct(CiColor p1, CiColor p2);
///
/// @param a reference point one
///
/// @param b reference point two
///
/// @param p the point to which the closest point is to be found
///
/// @return the closest color point of p to a and b
///
CiColor getClosestPointToPoint(CiColor a, CiColor b, CiColor p);
///
/// @param p1 point one
///
/// @param p2 point tow
///
/// @return the distance between the two points
///
float getDistanceBetweenTwoPoints(CiColor p1, CiColor p2);
}; };
/** /**
@ -97,9 +151,8 @@ private slots:
void restoreStates(); void restoreStates();
private: private:
const static ColorPoint BLACK;
/// Array to save the lamps. /// Array to save the lamps.
std::vector<HueLamp> lamps; std::vector<PhilipsHueLamp> lamps;
/// Ip address of the bridge /// Ip address of the bridge
QString host; QString host;
/// User name for the API ("newdeveloper") /// User name for the API ("newdeveloper")
@ -162,58 +215,4 @@ private:
/// ///
bool areStatesSaved(); bool areStatesSaved();
///
/// Converts an RGB color to the Hue xy color space and brightness.
/// https://github.com/PhilipsHue/PhilipsHueSDK-iOS-OSX/blob/master/ApplicationDesignNotes/RGB%20to%20xy%20Color%20conversion.md
///
/// @param red the red component in [0, 1]
///
/// @param green the green component in [0, 1]
///
/// @param blue the blue component in [0, 1]
///
/// @param lamp the hue lamp instance used for color space checks.
///
/// @return color point
///
ColorPoint rgbToXYBrightness(float red, float green, float blue, HueLamp lamp);
///
/// @param p1 point one
///
/// @param p2 point tow
///
/// @return the cross product between p1 and p2
///
float crossProduct(ColorPoint p1, ColorPoint p2);
///
/// @param lamp the hue lamp instance
///
/// @param p the color point to check
///
/// @return true if the color point is covered by the lamp color space
///
bool isPointInLampsReach(HueLamp lamp, ColorPoint p);
///
/// @param a reference point one
///
/// @param b reference point two
///
/// @param p the point to which the closest point is to be found
///
/// @return the closest color point of p to a and b
///
ColorPoint getClosestPointToPoint(ColorPoint a, ColorPoint b, ColorPoint p);
///
/// @param p1 point one
///
/// @param p2 point tow
///
/// @return the distance between the two points
///
float getDistanceBetweenTwoPoints(ColorPoint p1, ColorPoint p2);
}; };