1090 lines
33 KiB
C
Raw Normal View History

/******************************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2009 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2005 - 2009 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <net/mac80211.h>
#include "iwl-commands.h"
#include "iwl-dev.h"
#include "iwl-core.h"
#include "iwl-debug.h"
#include "iwl-eeprom.h"
#include "iwl-io.h"
/************************** EEPROM BANDS ****************************
*
* The iwl_eeprom_band definitions below provide the mapping from the
* EEPROM contents to the specific channel number supported for each
* band.
*
* For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
* definition below maps to physical channel 42 in the 5.2GHz spectrum.
* The specific geography and calibration information for that channel
* is contained in the eeprom map itself.
*
* During init, we copy the eeprom information and channel map
* information into priv->channel_info_24/52 and priv->channel_map_24/52
*
* channel_map_24/52 provides the index in the channel_info array for a
* given channel. We have to have two separate maps as there is channel
* overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
* band_2
*
* A value of 0xff stored in the channel_map indicates that the channel
* is not supported by the hardware at all.
*
* A value of 0xfe in the channel_map indicates that the channel is not
* valid for Tx with the current hardware. This means that
* while the system can tune and receive on a given channel, it may not
* be able to associate or transmit any frames on that
* channel. There is no corresponding channel information for that
* entry.
*
*********************************************************************/
/* 2.4 GHz */
const u8 iwl_eeprom_band_1[14] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
};
/* 5.2 GHz bands */
static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */
183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
};
static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */
34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
};
static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
};
static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */
145, 149, 153, 157, 161, 165
};
static const u8 iwl_eeprom_band_6[] = { /* 2.4 ht40 channel */
1, 2, 3, 4, 5, 6, 7
};
static const u8 iwl_eeprom_band_7[] = { /* 5.2 ht40 channel */
36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
};
/**
* struct iwl_txpwr_section: eeprom section information
* @offset: indirect address into eeprom image
* @count: number of "struct iwl_eeprom_enhanced_txpwr" in this section
* @band: band type for the section
* @is_common - true: common section, false: channel section
* @is_cck - true: cck section, false: not cck section
* @is_ht_40 - true: all channel in the section are HT40 channel,
* false: legacy or HT 20 MHz
* ignore if it is common section
* @iwl_eeprom_section_channel: channel array in the section,
* ignore if common section
*/
struct iwl_txpwr_section {
u32 offset;
u8 count;
enum ieee80211_band band;
bool is_common;
bool is_cck;
bool is_ht40;
u8 iwl_eeprom_section_channel[EEPROM_MAX_TXPOWER_SECTION_ELEMENTS];
};
/**
* section 1 - 3 are regulatory tx power apply to all channels based on
* modulation: CCK, OFDM
* Band: 2.4GHz, 5.2GHz
* section 4 - 10 are regulatory tx power apply to specified channels
* For example:
* 1L - Channel 1 Legacy
* 1HT - Channel 1 HT
* (1,+1) - Channel 1 HT40 "_above_"
*
* Section 1: all CCK channels
* Section 2: all 2.4 GHz OFDM (Legacy, HT and HT40) channels
* Section 3: all 5.2 GHz OFDM (Legacy, HT and HT40) channels
* Section 4: 2.4 GHz 20MHz channels: 1L, 1HT, 2L, 2HT, 10L, 10HT, 11L, 11HT
* Section 5: 2.4 GHz 40MHz channels: (1,+1) (2,+1) (6,+1) (7,+1) (9,+1)
* Section 6: 5.2 GHz 20MHz channels: 36L, 64L, 100L, 36HT, 64HT, 100HT
* Section 7: 5.2 GHz 40MHz channels: (36,+1) (60,+1) (100,+1)
* Section 8: 2.4 GHz channel: 13L, 13HT
* Section 9: 2.4 GHz channel: 140L, 140HT
* Section 10: 2.4 GHz 40MHz channels: (132,+1) (44,+1)
*
*/
static const struct iwl_txpwr_section enhinfo[] = {
{ EEPROM_LB_CCK_20_COMMON, 1, IEEE80211_BAND_2GHZ, true, true, false },
{ EEPROM_LB_OFDM_COMMON, 3, IEEE80211_BAND_2GHZ, true, false, false },
{ EEPROM_HB_OFDM_COMMON, 3, IEEE80211_BAND_5GHZ, true, false, false },
{ EEPROM_LB_OFDM_20_BAND, 8, IEEE80211_BAND_2GHZ,
false, false, false,
{1, 1, 2, 2, 10, 10, 11, 11 } },
{ EEPROM_LB_OFDM_HT40_BAND, 5, IEEE80211_BAND_2GHZ,
false, false, true,
{ 1, 2, 6, 7, 9 } },
{ EEPROM_HB_OFDM_20_BAND, 6, IEEE80211_BAND_5GHZ,
false, false, false,
{ 36, 64, 100, 36, 64, 100 } },
{ EEPROM_HB_OFDM_HT40_BAND, 3, IEEE80211_BAND_5GHZ,
false, false, true,
{ 36, 60, 100 } },
{ EEPROM_LB_OFDM_20_CHANNEL_13, 2, IEEE80211_BAND_2GHZ,
false, false, false,
{ 13, 13 } },
{ EEPROM_HB_OFDM_20_CHANNEL_140, 2, IEEE80211_BAND_5GHZ,
false, false, false,
{ 140, 140 } },
{ EEPROM_HB_OFDM_HT40_BAND_1, 2, IEEE80211_BAND_5GHZ,
false, false, true,
{ 132, 44 } },
};
/******************************************************************************
*
* EEPROM related functions
*
******************************************************************************/
int iwlcore_eeprom_verify_signature(struct iwl_priv *priv)
{
u32 gp = iwl_read32(priv, CSR_EEPROM_GP);
if ((gp & CSR_EEPROM_GP_VALID_MSK) == CSR_EEPROM_GP_BAD_SIGNATURE) {
IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
return -ENOENT;
}
return 0;
}
EXPORT_SYMBOL(iwlcore_eeprom_verify_signature);
static void iwl_set_otp_access(struct iwl_priv *priv, enum iwl_access_mode mode)
{
u32 otpgp;
otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
if (mode == IWL_OTP_ACCESS_ABSOLUTE)
iwl_clear_bit(priv, CSR_OTP_GP_REG,
CSR_OTP_GP_REG_OTP_ACCESS_MODE);
else
iwl_set_bit(priv, CSR_OTP_GP_REG,
CSR_OTP_GP_REG_OTP_ACCESS_MODE);
}
static int iwlcore_get_nvm_type(struct iwl_priv *priv)
{
u32 otpgp;
int nvm_type;
/* OTP only valid for CP/PP and after */
switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) {
case CSR_HW_REV_TYPE_NONE:
IWL_ERR(priv, "Unknown hardware type\n");
return -ENOENT;
case CSR_HW_REV_TYPE_3945:
case CSR_HW_REV_TYPE_4965:
case CSR_HW_REV_TYPE_5300:
case CSR_HW_REV_TYPE_5350:
case CSR_HW_REV_TYPE_5100:
case CSR_HW_REV_TYPE_5150:
nvm_type = NVM_DEVICE_TYPE_EEPROM;
break;
default:
otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
nvm_type = NVM_DEVICE_TYPE_OTP;
else
nvm_type = NVM_DEVICE_TYPE_EEPROM;
break;
}
return nvm_type;
}
/*
* The device's EEPROM semaphore prevents conflicts between driver and uCode
* when accessing the EEPROM; each access is a series of pulses to/from the
* EEPROM chip, not a single event, so even reads could conflict if they
* weren't arbitrated by the semaphore.
*/
int iwlcore_eeprom_acquire_semaphore(struct iwl_priv *priv)
{
u16 count;
int ret;
for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
/* Request semaphore */
iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
/* See if we got it */
ret = iwl_poll_direct_bit(priv, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
EEPROM_SEM_TIMEOUT);
if (ret >= 0) {
IWL_DEBUG_IO(priv, "Acquired semaphore after %d tries.\n",
count+1);
return ret;
}
}
return ret;
}
EXPORT_SYMBOL(iwlcore_eeprom_acquire_semaphore);
void iwlcore_eeprom_release_semaphore(struct iwl_priv *priv)
{
iwl_clear_bit(priv, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
}
EXPORT_SYMBOL(iwlcore_eeprom_release_semaphore);
const u8 *iwlcore_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
{
BUG_ON(offset >= priv->cfg->eeprom_size);
return &priv->eeprom[offset];
}
EXPORT_SYMBOL(iwlcore_eeprom_query_addr);
static int iwl_init_otp_access(struct iwl_priv *priv)
{
int ret;
/* Enable 40MHz radio clock */
_iwl_write32(priv, CSR_GP_CNTRL,
_iwl_read32(priv, CSR_GP_CNTRL) |
CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
/* wait for clock to be ready */
ret = iwl_poll_direct_bit(priv, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
25000);
if (ret < 0)
IWL_ERR(priv, "Time out access OTP\n");
else {
iwl_set_bits_prph(priv, APMG_PS_CTRL_REG,
APMG_PS_CTRL_VAL_RESET_REQ);
udelay(5);
iwl_clear_bits_prph(priv, APMG_PS_CTRL_REG,
APMG_PS_CTRL_VAL_RESET_REQ);
}
return ret;
}
static int iwl_read_otp_word(struct iwl_priv *priv, u16 addr, __le16 *eeprom_data)
{
int ret = 0;
u32 r;
u32 otpgp;
_iwl_write32(priv, CSR_EEPROM_REG,
CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
ret = iwl_poll_direct_bit(priv, CSR_EEPROM_REG,
CSR_EEPROM_REG_READ_VALID_MSK,
IWL_EEPROM_ACCESS_TIMEOUT);
if (ret < 0) {
IWL_ERR(priv, "Time out reading OTP[%d]\n", addr);
return ret;
}
r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
/* check for ECC errors: */
otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
/* stop in this case */
/* set the uncorrectable OTP ECC bit for acknowledgement */
iwl_set_bit(priv, CSR_OTP_GP_REG,
CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
IWL_ERR(priv, "Uncorrectable OTP ECC error, abort OTP read\n");
return -EINVAL;
}
if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
/* continue in this case */
/* set the correctable OTP ECC bit for acknowledgement */
iwl_set_bit(priv, CSR_OTP_GP_REG,
CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
IWL_ERR(priv, "Correctable OTP ECC error, continue read\n");
}
*eeprom_data = cpu_to_le16(r >> 16);
return 0;
}
/*
* iwl_is_otp_empty: check for empty OTP
*/
static bool iwl_is_otp_empty(struct iwl_priv *priv)
{
u16 next_link_addr = 0;
__le16 link_value;
bool is_empty = false;
/* locate the beginning of OTP link list */
if (!iwl_read_otp_word(priv, next_link_addr, &link_value)) {
if (!link_value) {
IWL_ERR(priv, "OTP is empty\n");
is_empty = true;
}
} else {
IWL_ERR(priv, "Unable to read first block of OTP list.\n");
is_empty = true;
}
return is_empty;
}
/*
* iwl_find_otp_image: find EEPROM image in OTP
* finding the OTP block that contains the EEPROM image.
* the last valid block on the link list (the block _before_ the last block)
* is the block we should read and used to configure the device.
* If all the available OTP blocks are full, the last block will be the block
* we should read and used to configure the device.
* only perform this operation if shadow RAM is disabled
*/
static int iwl_find_otp_image(struct iwl_priv *priv,
u16 *validblockaddr)
{
u16 next_link_addr = 0, valid_addr;
__le16 link_value = 0;
int usedblocks = 0;
/* set addressing mode to absolute to traverse the link list */
iwl_set_otp_access(priv, IWL_OTP_ACCESS_ABSOLUTE);
/* checking for empty OTP or error */
if (iwl_is_otp_empty(priv))
return -EINVAL;
/*
* start traverse link list
* until reach the max number of OTP blocks
* different devices have different number of OTP blocks
*/
do {
/* save current valid block address
* check for more block on the link list
*/
valid_addr = next_link_addr;
next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
IWL_DEBUG_INFO(priv, "OTP blocks %d addr 0x%x\n",
usedblocks, next_link_addr);
if (iwl_read_otp_word(priv, next_link_addr, &link_value))
return -EINVAL;
if (!link_value) {
/*
* reach the end of link list, return success and
* set address point to the starting address
* of the image
*/
*validblockaddr = valid_addr;
/* skip first 2 bytes (link list pointer) */
*validblockaddr += 2;
return 0;
}
/* more in the link list, continue */
usedblocks++;
} while (usedblocks <= priv->cfg->max_ll_items);
/* OTP has no valid blocks */
IWL_DEBUG_INFO(priv, "OTP has no valid blocks\n");
return -EINVAL;
}
/**
* iwl_eeprom_init - read EEPROM contents
*
* Load the EEPROM contents from adapter into priv->eeprom
*
* NOTE: This routine uses the non-debug IO access functions.
*/
int iwl_eeprom_init(struct iwl_priv *priv)
{
__le16 *e;
u32 gp = iwl_read32(priv, CSR_EEPROM_GP);
int sz;
int ret;
u16 addr;
u16 validblockaddr = 0;
u16 cache_addr = 0;
priv->nvm_device_type = iwlcore_get_nvm_type(priv);
if (priv->nvm_device_type == -ENOENT)
return -ENOENT;
/* allocate eeprom */
IWL_DEBUG_INFO(priv, "NVM size = %d\n", priv->cfg->eeprom_size);
sz = priv->cfg->eeprom_size;
priv->eeprom = kzalloc(sz, GFP_KERNEL);
if (!priv->eeprom) {
ret = -ENOMEM;
goto alloc_err;
}
e = (__le16 *)priv->eeprom;
ret = priv->cfg->ops->lib->eeprom_ops.verify_signature(priv);
if (ret < 0) {
IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
ret = -ENOENT;
goto err;
}
/* Make sure driver (instead of uCode) is allowed to read EEPROM */
ret = priv->cfg->ops->lib->eeprom_ops.acquire_semaphore(priv);
if (ret < 0) {
IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n");
ret = -ENOENT;
goto err;
}
if (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) {
ret = iwl_init_otp_access(priv);
if (ret) {
IWL_ERR(priv, "Failed to initialize OTP access.\n");
ret = -ENOENT;
goto done;
}
_iwl_write32(priv, CSR_EEPROM_GP,
iwl_read32(priv, CSR_EEPROM_GP) &
~CSR_EEPROM_GP_IF_OWNER_MSK);
iwl_set_bit(priv, CSR_OTP_GP_REG,
CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
/* traversing the linked list if no shadow ram supported */
if (!priv->cfg->shadow_ram_support) {
if (iwl_find_otp_image(priv, &validblockaddr)) {
ret = -ENOENT;
goto done;
}
}
for (addr = validblockaddr; addr < validblockaddr + sz;
addr += sizeof(u16)) {
__le16 eeprom_data;
ret = iwl_read_otp_word(priv, addr, &eeprom_data);
if (ret)
goto done;
e[cache_addr / 2] = eeprom_data;
cache_addr += sizeof(u16);
}
} else {
/* eeprom is an array of 16bit values */
for (addr = 0; addr < sz; addr += sizeof(u16)) {
u32 r;
_iwl_write32(priv, CSR_EEPROM_REG,
CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
ret = iwl_poll_direct_bit(priv, CSR_EEPROM_REG,
CSR_EEPROM_REG_READ_VALID_MSK,
IWL_EEPROM_ACCESS_TIMEOUT);
if (ret < 0) {
IWL_ERR(priv, "Time out reading EEPROM[%d]\n", addr);
goto done;
}
r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
e[addr / 2] = cpu_to_le16(r >> 16);
}
}
ret = 0;
done:
priv->cfg->ops->lib->eeprom_ops.release_semaphore(priv);
err:
if (ret)
iwl_eeprom_free(priv);
alloc_err:
return ret;
}
EXPORT_SYMBOL(iwl_eeprom_init);
void iwl_eeprom_free(struct iwl_priv *priv)
{
kfree(priv->eeprom);
priv->eeprom = NULL;
}
EXPORT_SYMBOL(iwl_eeprom_free);
int iwl_eeprom_check_version(struct iwl_priv *priv)
{
u16 eeprom_ver;
u16 calib_ver;
eeprom_ver = iwl_eeprom_query16(priv, EEPROM_VERSION);
calib_ver = priv->cfg->ops->lib->eeprom_ops.calib_version(priv);
if (eeprom_ver < priv->cfg->eeprom_ver ||
calib_ver < priv->cfg->eeprom_calib_ver)
goto err;
return 0;
err:
IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
eeprom_ver, priv->cfg->eeprom_ver,
calib_ver, priv->cfg->eeprom_calib_ver);
return -EINVAL;
}
EXPORT_SYMBOL(iwl_eeprom_check_version);
const u8 *iwl_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
{
return priv->cfg->ops->lib->eeprom_ops.query_addr(priv, offset);
}
EXPORT_SYMBOL(iwl_eeprom_query_addr);
u16 iwl_eeprom_query16(const struct iwl_priv *priv, size_t offset)
{
if (!priv->eeprom)
return 0;
return (u16)priv->eeprom[offset] | ((u16)priv->eeprom[offset + 1] << 8);
}
EXPORT_SYMBOL(iwl_eeprom_query16);
void iwl_eeprom_get_mac(const struct iwl_priv *priv, u8 *mac)
{
const u8 *addr = priv->cfg->ops->lib->eeprom_ops.query_addr(priv,
EEPROM_MAC_ADDRESS);
memcpy(mac, addr, ETH_ALEN);
}
EXPORT_SYMBOL(iwl_eeprom_get_mac);
static void iwl_init_band_reference(const struct iwl_priv *priv,
int eep_band, int *eeprom_ch_count,
const struct iwl_eeprom_channel **eeprom_ch_info,
const u8 **eeprom_ch_index)
{
u32 offset = priv->cfg->ops->lib->
eeprom_ops.regulatory_bands[eep_band - 1];
switch (eep_band) {
case 1: /* 2.4GHz band */
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
*eeprom_ch_info = (struct iwl_eeprom_channel *)
iwl_eeprom_query_addr(priv, offset);
*eeprom_ch_index = iwl_eeprom_band_1;
break;
case 2: /* 4.9GHz band */
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
*eeprom_ch_info = (struct iwl_eeprom_channel *)
iwl_eeprom_query_addr(priv, offset);
*eeprom_ch_index = iwl_eeprom_band_2;
break;
case 3: /* 5.2GHz band */
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
*eeprom_ch_info = (struct iwl_eeprom_channel *)
iwl_eeprom_query_addr(priv, offset);
*eeprom_ch_index = iwl_eeprom_band_3;
break;
case 4: /* 5.5GHz band */
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
*eeprom_ch_info = (struct iwl_eeprom_channel *)
iwl_eeprom_query_addr(priv, offset);
*eeprom_ch_index = iwl_eeprom_band_4;
break;
case 5: /* 5.7GHz band */
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
*eeprom_ch_info = (struct iwl_eeprom_channel *)
iwl_eeprom_query_addr(priv, offset);
*eeprom_ch_index = iwl_eeprom_band_5;
break;
case 6: /* 2.4GHz ht40 channels */
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
*eeprom_ch_info = (struct iwl_eeprom_channel *)
iwl_eeprom_query_addr(priv, offset);
*eeprom_ch_index = iwl_eeprom_band_6;
break;
case 7: /* 5 GHz ht40 channels */
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
*eeprom_ch_info = (struct iwl_eeprom_channel *)
iwl_eeprom_query_addr(priv, offset);
*eeprom_ch_index = iwl_eeprom_band_7;
break;
default:
BUG();
return;
}
}
#define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
? # x " " : "")
/**
* iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
*
* Does not set up a command, or touch hardware.
*/
static int iwl_mod_ht40_chan_info(struct iwl_priv *priv,
enum ieee80211_band band, u16 channel,
const struct iwl_eeprom_channel *eeprom_ch,
u8 clear_ht40_extension_channel)
{
struct iwl_channel_info *ch_info;
ch_info = (struct iwl_channel_info *)
iwl_get_channel_info(priv, band, channel);
if (!is_channel_valid(ch_info))
return -1;
IWL_DEBUG_INFO(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
" Ad-Hoc %ssupported\n",
ch_info->channel,
is_channel_a_band(ch_info) ?
"5.2" : "2.4",
CHECK_AND_PRINT(IBSS),
CHECK_AND_PRINT(ACTIVE),
CHECK_AND_PRINT(RADAR),
CHECK_AND_PRINT(WIDE),
CHECK_AND_PRINT(DFS),
eeprom_ch->flags,
eeprom_ch->max_power_avg,
((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
&& !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
"" : "not ");
ch_info->ht40_eeprom = *eeprom_ch;
ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
ch_info->ht40_curr_txpow = eeprom_ch->max_power_avg;
ch_info->ht40_min_power = 0;
ch_info->ht40_scan_power = eeprom_ch->max_power_avg;
ch_info->ht40_flags = eeprom_ch->flags;
if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel;
return 0;
}
/**
* iwl_get_max_txpower_avg - get the highest tx power from all chains.
* find the highest tx power from all chains for the channel
*/
static s8 iwl_get_max_txpower_avg(struct iwl_priv *priv,
struct iwl_eeprom_enhanced_txpwr *enhanced_txpower, int element)
{
s8 max_txpower_avg = 0; /* (dBm) */
IWL_DEBUG_INFO(priv, "%d - "
"chain_a: %d dB chain_b: %d dB "
"chain_c: %d dB mimo2: %d dB mimo3: %d dB\n",
element,
enhanced_txpower[element].chain_a_max >> 1,
enhanced_txpower[element].chain_b_max >> 1,
enhanced_txpower[element].chain_c_max >> 1,
enhanced_txpower[element].mimo2_max >> 1,
enhanced_txpower[element].mimo3_max >> 1);
/* Take the highest tx power from any valid chains */
if ((priv->cfg->valid_tx_ant & ANT_A) &&
(enhanced_txpower[element].chain_a_max > max_txpower_avg))
max_txpower_avg = enhanced_txpower[element].chain_a_max;
if ((priv->cfg->valid_tx_ant & ANT_B) &&
(enhanced_txpower[element].chain_b_max > max_txpower_avg))
max_txpower_avg = enhanced_txpower[element].chain_b_max;
if ((priv->cfg->valid_tx_ant & ANT_C) &&
(enhanced_txpower[element].chain_c_max > max_txpower_avg))
max_txpower_avg = enhanced_txpower[element].chain_c_max;
if (((priv->cfg->valid_tx_ant == ANT_AB) |
(priv->cfg->valid_tx_ant == ANT_BC) |
(priv->cfg->valid_tx_ant == ANT_AC)) &&
(enhanced_txpower[element].mimo2_max > max_txpower_avg))
max_txpower_avg = enhanced_txpower[element].mimo2_max;
if ((priv->cfg->valid_tx_ant == ANT_ABC) &&
(enhanced_txpower[element].mimo3_max > max_txpower_avg))
max_txpower_avg = enhanced_txpower[element].mimo3_max;
/* max. tx power in EEPROM is in 1/2 dBm format
* convert from 1/2 dBm to dBm
*/
return max_txpower_avg >> 1;
}
/**
* iwl_update_common_txpower: update channel tx power
* update tx power per band based on EEPROM enhanced tx power info.
*/
static s8 iwl_update_common_txpower(struct iwl_priv *priv,
struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
int section, int element)
{
struct iwl_channel_info *ch_info;
int ch;
bool is_ht40 = false;
s8 max_txpower_avg; /* (dBm) */
/* it is common section, contain all type (Legacy, HT and HT40)
* based on the element in the section to determine
* is it HT 40 or not
*/
if (element == EEPROM_TXPOWER_COMMON_HT40_INDEX)
is_ht40 = true;
max_txpower_avg =
iwl_get_max_txpower_avg(priv, enhanced_txpower, element);
ch_info = priv->channel_info;
for (ch = 0; ch < priv->channel_count; ch++) {
/* find matching band and update tx power if needed */
if ((ch_info->band == enhinfo[section].band) &&
(ch_info->max_power_avg < max_txpower_avg) && (!is_ht40)) {
/* Update regulatory-based run-time data */
ch_info->max_power_avg = ch_info->curr_txpow =
max_txpower_avg;
ch_info->scan_power = max_txpower_avg;
}
if ((ch_info->band == enhinfo[section].band) && is_ht40 &&
ch_info->ht40_max_power_avg &&
(ch_info->ht40_max_power_avg < max_txpower_avg)) {
/* Update regulatory-based run-time data */
ch_info->ht40_max_power_avg = max_txpower_avg;
ch_info->ht40_curr_txpow = max_txpower_avg;
ch_info->ht40_scan_power = max_txpower_avg;
}
ch_info++;
}
return max_txpower_avg;
}
/**
* iwl_update_channel_txpower: update channel tx power
* update channel tx power based on EEPROM enhanced tx power info.
*/
static s8 iwl_update_channel_txpower(struct iwl_priv *priv,
struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
int section, int element)
{
struct iwl_channel_info *ch_info;
int ch;
u8 channel;
s8 max_txpower_avg; /* (dBm) */
channel = enhinfo[section].iwl_eeprom_section_channel[element];
max_txpower_avg =
iwl_get_max_txpower_avg(priv, enhanced_txpower, element);
ch_info = priv->channel_info;
for (ch = 0; ch < priv->channel_count; ch++) {
/* find matching channel and update tx power if needed */
if (ch_info->channel == channel) {
if ((ch_info->max_power_avg < max_txpower_avg) &&
(!enhinfo[section].is_ht40)) {
/* Update regulatory-based run-time data */
ch_info->max_power_avg = max_txpower_avg;
ch_info->curr_txpow = max_txpower_avg;
ch_info->scan_power = max_txpower_avg;
}
if ((enhinfo[section].is_ht40) &&
(ch_info->ht40_max_power_avg) &&
(ch_info->ht40_max_power_avg < max_txpower_avg)) {
/* Update regulatory-based run-time data */
ch_info->ht40_max_power_avg = max_txpower_avg;
ch_info->ht40_curr_txpow = max_txpower_avg;
ch_info->ht40_scan_power = max_txpower_avg;
}
break;
}
ch_info++;
}
return max_txpower_avg;
}
/**
* iwlcore_eeprom_enhanced_txpower: process enhanced tx power info
*/
void iwlcore_eeprom_enhanced_txpower(struct iwl_priv *priv)
{
int eeprom_section_count = 0;
int section, element;
struct iwl_eeprom_enhanced_txpwr *enhanced_txpower;
u32 offset;
s8 max_txpower_avg; /* (dBm) */
/* Loop through all the sections
* adjust bands and channel's max tx power
* Set the tx_power_user_lmt to the highest power
* supported by any channels and chains
*/
for (section = 0; section < ARRAY_SIZE(enhinfo); section++) {
eeprom_section_count = enhinfo[section].count;
offset = enhinfo[section].offset;
enhanced_txpower = (struct iwl_eeprom_enhanced_txpwr *)
iwl_eeprom_query_addr(priv, offset);
for (element = 0; element < eeprom_section_count; element++) {
if (enhinfo[section].is_common)
max_txpower_avg =
iwl_update_common_txpower(priv,
enhanced_txpower, section, element);
else
max_txpower_avg =
iwl_update_channel_txpower(priv,
enhanced_txpower, section, element);
/* Update the tx_power_user_lmt to the highest power
* supported by any channel */
if (max_txpower_avg > priv->tx_power_user_lmt)
priv->tx_power_user_lmt = max_txpower_avg;
}
}
}
EXPORT_SYMBOL(iwlcore_eeprom_enhanced_txpower);
#define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
? # x " " : "")
/**
* iwl_init_channel_map - Set up driver's info for all possible channels
*/
int iwl_init_channel_map(struct iwl_priv *priv)
{
int eeprom_ch_count = 0;
const u8 *eeprom_ch_index = NULL;
const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
int band, ch;
struct iwl_channel_info *ch_info;
if (priv->channel_count) {
IWL_DEBUG_INFO(priv, "Channel map already initialized.\n");
return 0;
}
IWL_DEBUG_INFO(priv, "Initializing regulatory info from EEPROM\n");
priv->channel_count =
ARRAY_SIZE(iwl_eeprom_band_1) +
ARRAY_SIZE(iwl_eeprom_band_2) +
ARRAY_SIZE(iwl_eeprom_band_3) +
ARRAY_SIZE(iwl_eeprom_band_4) +
ARRAY_SIZE(iwl_eeprom_band_5);
IWL_DEBUG_INFO(priv, "Parsing data for %d channels.\n", priv->channel_count);
priv->channel_info = kzalloc(sizeof(struct iwl_channel_info) *
priv->channel_count, GFP_KERNEL);
if (!priv->channel_info) {
IWL_ERR(priv, "Could not allocate channel_info\n");
priv->channel_count = 0;
return -ENOMEM;
}
ch_info = priv->channel_info;
/* Loop through the 5 EEPROM bands adding them in order to the
* channel map we maintain (that contains additional information than
* what just in the EEPROM) */
for (band = 1; band <= 5; band++) {
iwl_init_band_reference(priv, band, &eeprom_ch_count,
&eeprom_ch_info, &eeprom_ch_index);
/* Loop through each band adding each of the channels */
for (ch = 0; ch < eeprom_ch_count; ch++) {
ch_info->channel = eeprom_ch_index[ch];
ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
IEEE80211_BAND_5GHZ;
/* permanently store EEPROM's channel regulatory flags
* and max power in channel info database. */
ch_info->eeprom = eeprom_ch_info[ch];
/* Copy the run-time flags so they are there even on
* invalid channels */
ch_info->flags = eeprom_ch_info[ch].flags;
/* First write that ht40 is not enabled, and then enable
* one by one */
ch_info->ht40_extension_channel =
IEEE80211_CHAN_NO_HT40;
if (!(is_channel_valid(ch_info))) {
IWL_DEBUG_INFO(priv, "Ch. %d Flags %x [%sGHz] - "
"No traffic\n",
ch_info->channel,
ch_info->flags,
is_channel_a_band(ch_info) ?
"5.2" : "2.4");
ch_info++;
continue;
}
/* Initialize regulatory-based run-time data */
ch_info->max_power_avg = ch_info->curr_txpow =
eeprom_ch_info[ch].max_power_avg;
ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
ch_info->min_power = 0;
IWL_DEBUG_INFO(priv, "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm):"
" Ad-Hoc %ssupported\n",
ch_info->channel,
is_channel_a_band(ch_info) ?
"5.2" : "2.4",
CHECK_AND_PRINT_I(VALID),
CHECK_AND_PRINT_I(IBSS),
CHECK_AND_PRINT_I(ACTIVE),
CHECK_AND_PRINT_I(RADAR),
CHECK_AND_PRINT_I(WIDE),
CHECK_AND_PRINT_I(DFS),
eeprom_ch_info[ch].flags,
eeprom_ch_info[ch].max_power_avg,
((eeprom_ch_info[ch].
flags & EEPROM_CHANNEL_IBSS)
&& !(eeprom_ch_info[ch].
flags & EEPROM_CHANNEL_RADAR))
? "" : "not ");
/* Set the tx_power_user_lmt to the highest power
* supported by any channel */
if (eeprom_ch_info[ch].max_power_avg >
priv->tx_power_user_lmt)
priv->tx_power_user_lmt =
eeprom_ch_info[ch].max_power_avg;
ch_info++;
}
}
/* Check if we do have HT40 channels */
if (priv->cfg->ops->lib->eeprom_ops.regulatory_bands[5] ==
EEPROM_REGULATORY_BAND_NO_HT40 &&
priv->cfg->ops->lib->eeprom_ops.regulatory_bands[6] ==
EEPROM_REGULATORY_BAND_NO_HT40)
return 0;
/* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
for (band = 6; band <= 7; band++) {
enum ieee80211_band ieeeband;
iwl_init_band_reference(priv, band, &eeprom_ch_count,
&eeprom_ch_info, &eeprom_ch_index);
/* EEPROM band 6 is 2.4, band 7 is 5 GHz */
ieeeband =
(band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
/* Loop through each band adding each of the channels */
for (ch = 0; ch < eeprom_ch_count; ch++) {
/* Set up driver's info for lower half */
iwl_mod_ht40_chan_info(priv, ieeeband,
eeprom_ch_index[ch],
&eeprom_ch_info[ch],
IEEE80211_CHAN_NO_HT40PLUS);
/* Set up driver's info for upper half */
iwl_mod_ht40_chan_info(priv, ieeeband,
eeprom_ch_index[ch] + 4,
&eeprom_ch_info[ch],
IEEE80211_CHAN_NO_HT40MINUS);
}
}
/* for newer device (6000 series and up)
* EEPROM contain enhanced tx power information
* driver need to process addition information
* to determine the max channel tx power limits
*/
if (priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower)
priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower(priv);
return 0;
}
EXPORT_SYMBOL(iwl_init_channel_map);
/*
* iwl_free_channel_map - undo allocations in iwl_init_channel_map
*/
void iwl_free_channel_map(struct iwl_priv *priv)
{
kfree(priv->channel_info);
priv->channel_count = 0;
}
EXPORT_SYMBOL(iwl_free_channel_map);
/**
* iwl_get_channel_info - Find driver's private channel info
*
* Based on band and channel number.
*/
const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv,
enum ieee80211_band band, u16 channel)
{
int i;
switch (band) {
case IEEE80211_BAND_5GHZ:
for (i = 14; i < priv->channel_count; i++) {
if (priv->channel_info[i].channel == channel)
return &priv->channel_info[i];
}
break;
case IEEE80211_BAND_2GHZ:
if (channel >= 1 && channel <= 14)
return &priv->channel_info[channel - 1];
break;
default:
BUG();
}
return NULL;
}
EXPORT_SYMBOL(iwl_get_channel_info);