2015-03-26 17:24:57 +01:00

519 lines
13 KiB
C

/*
* Atheros AR9170 driver
*
* MAC programming
*
* Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, see
* http://www.gnu.org/licenses/.
*
* This file incorporates work covered by the following copyright and
* permission notice:
* Copyright (c) 2007-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "ar9170.h"
#include "cmd.h"
int ar9170_set_dyn_sifs_ack(struct ar9170 *ar)
{
u32 val;
if (conf_is_ht40(&ar->hw->conf))
val = 0x010a;
else {
if (ar->hw->conf.channel->band == IEEE80211_BAND_2GHZ)
val = 0x105;
else
val = 0x104;
}
return ar9170_write_reg(ar, AR9170_MAC_REG_DYNAMIC_SIFS_ACK, val);
}
int ar9170_set_slot_time(struct ar9170 *ar)
{
u32 slottime = 20;
if (!ar->vif)
return 0;
if ((ar->hw->conf.channel->band == IEEE80211_BAND_5GHZ) ||
ar->vif->bss_conf.use_short_slot)
slottime = 9;
return ar9170_write_reg(ar, AR9170_MAC_REG_SLOT_TIME, slottime << 10);
}
int ar9170_set_basic_rates(struct ar9170 *ar)
{
u8 cck, ofdm;
if (!ar->vif)
return 0;
ofdm = ar->vif->bss_conf.basic_rates >> 4;
/* FIXME: is still necessary? */
if (ar->hw->conf.channel->band == IEEE80211_BAND_5GHZ)
cck = 0;
else
cck = ar->vif->bss_conf.basic_rates & 0xf;
return ar9170_write_reg(ar, AR9170_MAC_REG_BASIC_RATE,
ofdm << 8 | cck);
}
int ar9170_set_qos(struct ar9170 *ar)
{
ar9170_regwrite_begin(ar);
ar9170_regwrite(AR9170_MAC_REG_AC0_CW, ar->edcf[0].cw_min |
(ar->edcf[0].cw_max << 16));
ar9170_regwrite(AR9170_MAC_REG_AC1_CW, ar->edcf[1].cw_min |
(ar->edcf[1].cw_max << 16));
ar9170_regwrite(AR9170_MAC_REG_AC2_CW, ar->edcf[2].cw_min |
(ar->edcf[2].cw_max << 16));
ar9170_regwrite(AR9170_MAC_REG_AC3_CW, ar->edcf[3].cw_min |
(ar->edcf[3].cw_max << 16));
ar9170_regwrite(AR9170_MAC_REG_AC4_CW, ar->edcf[4].cw_min |
(ar->edcf[4].cw_max << 16));
ar9170_regwrite(AR9170_MAC_REG_AC1_AC0_AIFS,
((ar->edcf[0].aifs * 9 + 10)) |
((ar->edcf[1].aifs * 9 + 10) << 12) |
((ar->edcf[2].aifs * 9 + 10) << 24));
ar9170_regwrite(AR9170_MAC_REG_AC3_AC2_AIFS,
((ar->edcf[2].aifs * 9 + 10) >> 8) |
((ar->edcf[3].aifs * 9 + 10) << 4) |
((ar->edcf[4].aifs * 9 + 10) << 16));
ar9170_regwrite(AR9170_MAC_REG_AC1_AC0_TXOP,
ar->edcf[0].txop | ar->edcf[1].txop << 16);
ar9170_regwrite(AR9170_MAC_REG_AC3_AC2_TXOP,
ar->edcf[1].txop | ar->edcf[3].txop << 16);
ar9170_regwrite_finish();
return ar9170_regwrite_result();
}
static int ar9170_set_ampdu_density(struct ar9170 *ar, u8 mpdudensity)
{
u32 val;
/* don't allow AMPDU density > 8us */
if (mpdudensity > 6)
return -EINVAL;
/* Watch out! Otus uses slightly different density values. */
val = 0x140a00 | (mpdudensity ? (mpdudensity + 1) : 0);
ar9170_regwrite_begin(ar);
ar9170_regwrite(AR9170_MAC_REG_AMPDU_DENSITY, val);
ar9170_regwrite_finish();
return ar9170_regwrite_result();
}
int ar9170_init_mac(struct ar9170 *ar)
{
ar9170_regwrite_begin(ar);
ar9170_regwrite(AR9170_MAC_REG_ACK_EXTENSION, 0x40);
ar9170_regwrite(AR9170_MAC_REG_RETRY_MAX, 0);
/* enable MMIC */
ar9170_regwrite(AR9170_MAC_REG_SNIFFER,
AR9170_MAC_REG_SNIFFER_DEFAULTS);
ar9170_regwrite(AR9170_MAC_REG_RX_THRESHOLD, 0xc1f80);
ar9170_regwrite(AR9170_MAC_REG_RX_PE_DELAY, 0x70);
ar9170_regwrite(AR9170_MAC_REG_EIFS_AND_SIFS, 0xa144000);
ar9170_regwrite(AR9170_MAC_REG_SLOT_TIME, 9 << 10);
/* CF-END mode */
ar9170_regwrite(0x1c3b2c, 0x19000000);
/* NAV protects ACK only (in TXOP) */
ar9170_regwrite(0x1c3b38, 0x201);
/* Set Beacon PHY CTRL's TPC to 0x7, TA1=1 */
/* OTUS set AM to 0x1 */
ar9170_regwrite(AR9170_MAC_REG_BCN_HT1, 0x8000170);
ar9170_regwrite(AR9170_MAC_REG_BACKOFF_PROTECT, 0x105);
/* AGG test code*/
/* Aggregation MAX number and timeout */
ar9170_regwrite(0x1c3b9c, 0x10000a);
ar9170_regwrite(AR9170_MAC_REG_FRAMETYPE_FILTER,
AR9170_MAC_REG_FTF_DEFAULTS);
/* Enable deaggregator, response in sniffer mode */
ar9170_regwrite(0x1c3c40, 0x1 | 1<<30);
/* rate sets */
ar9170_regwrite(AR9170_MAC_REG_BASIC_RATE, 0x150f);
ar9170_regwrite(AR9170_MAC_REG_MANDATORY_RATE, 0x150f);
ar9170_regwrite(AR9170_MAC_REG_RTS_CTS_RATE, 0x10b01bb);
/* MIMO response control */
ar9170_regwrite(0x1c3694, 0x4003C1E);/* bit 26~28 otus-AM */
/* switch MAC to OTUS interface */
ar9170_regwrite(0x1c3600, 0x3);
ar9170_regwrite(AR9170_MAC_REG_AMPDU_RX_THRESH, 0xffff);
/* set PHY register read timeout (??) */
ar9170_regwrite(AR9170_MAC_REG_MISC_680, 0xf00008);
/* Disable Rx TimeOut, workaround for BB. */
ar9170_regwrite(AR9170_MAC_REG_RX_TIMEOUT, 0x0);
/* Set CPU clock frequency to 88/80MHz */
ar9170_regwrite(AR9170_PWR_REG_CLOCK_SEL,
AR9170_PWR_CLK_AHB_80_88MHZ |
AR9170_PWR_CLK_DAC_160_INV_DLY);
/* Set WLAN DMA interrupt mode: generate int per packet */
ar9170_regwrite(AR9170_MAC_REG_TXRX_MPI, 0x110011);
ar9170_regwrite(AR9170_MAC_REG_FCS_SELECT,
AR9170_MAC_FCS_FIFO_PROT);
/* Disables the CF_END frame, undocumented register */
ar9170_regwrite(AR9170_MAC_REG_TXOP_NOT_ENOUGH_IND,
0x141E0F48);
ar9170_regwrite_finish();
return ar9170_regwrite_result();
}
static int ar9170_set_mac_reg(struct ar9170 *ar, const u32 reg, const u8 *mac)
{
static const u8 zero[ETH_ALEN] = { 0 };
if (!mac)
mac = zero;
ar9170_regwrite_begin(ar);
ar9170_regwrite(reg,
(mac[3] << 24) | (mac[2] << 16) |
(mac[1] << 8) | mac[0]);
ar9170_regwrite(reg + 4, (mac[5] << 8) | mac[4]);
ar9170_regwrite_finish();
return ar9170_regwrite_result();
}
int ar9170_update_multicast(struct ar9170 *ar, const u64 mc_hash)
{
int err;
ar9170_regwrite_begin(ar);
ar9170_regwrite(AR9170_MAC_REG_GROUP_HASH_TBL_H, mc_hash >> 32);
ar9170_regwrite(AR9170_MAC_REG_GROUP_HASH_TBL_L, mc_hash);
ar9170_regwrite_finish();
err = ar9170_regwrite_result();
if (err)
return err;
ar->cur_mc_hash = mc_hash;
return 0;
}
int ar9170_update_frame_filter(struct ar9170 *ar, const u32 filter)
{
int err;
err = ar9170_write_reg(ar, AR9170_MAC_REG_FRAMETYPE_FILTER, filter);
if (err)
return err;
ar->cur_filter = filter;
return 0;
}
static int ar9170_set_promiscouous(struct ar9170 *ar)
{
u32 encr_mode, sniffer;
int err;
err = ar9170_read_reg(ar, AR9170_MAC_REG_SNIFFER, &sniffer);
if (err)
return err;
err = ar9170_read_reg(ar, AR9170_MAC_REG_ENCRYPTION, &encr_mode);
if (err)
return err;
if (ar->sniffer_enabled) {
sniffer |= AR9170_MAC_REG_SNIFFER_ENABLE_PROMISC;
/*
* Rx decryption works in place.
*
* If we don't disable it, the hardware will render all
* encrypted frames which are encrypted with an unknown
* key useless.
*/
encr_mode |= AR9170_MAC_REG_ENCRYPTION_RX_SOFTWARE;
ar->sniffer_enabled = true;
} else {
sniffer &= ~AR9170_MAC_REG_SNIFFER_ENABLE_PROMISC;
if (ar->rx_software_decryption)
encr_mode |= AR9170_MAC_REG_ENCRYPTION_RX_SOFTWARE;
else
encr_mode &= ~AR9170_MAC_REG_ENCRYPTION_RX_SOFTWARE;
}
ar9170_regwrite_begin(ar);
ar9170_regwrite(AR9170_MAC_REG_ENCRYPTION, encr_mode);
ar9170_regwrite(AR9170_MAC_REG_SNIFFER, sniffer);
ar9170_regwrite_finish();
return ar9170_regwrite_result();
}
int ar9170_set_operating_mode(struct ar9170 *ar)
{
u32 pm_mode = AR9170_MAC_REG_POWERMGT_DEFAULTS;
u8 *mac_addr, *bssid;
int err;
if (ar->vif) {
mac_addr = ar->mac_addr;
bssid = ar->bssid;
switch (ar->vif->type) {
case NL80211_IFTYPE_MESH_POINT:
case NL80211_IFTYPE_ADHOC:
pm_mode |= AR9170_MAC_REG_POWERMGT_IBSS;
break;
case NL80211_IFTYPE_AP:
pm_mode |= AR9170_MAC_REG_POWERMGT_AP;
break;
case NL80211_IFTYPE_WDS:
pm_mode |= AR9170_MAC_REG_POWERMGT_AP_WDS;
break;
case NL80211_IFTYPE_MONITOR:
ar->sniffer_enabled = true;
ar->rx_software_decryption = true;
break;
default:
pm_mode |= AR9170_MAC_REG_POWERMGT_STA;
break;
}
} else {
mac_addr = NULL;
bssid = NULL;
}
err = ar9170_set_mac_reg(ar, AR9170_MAC_REG_MAC_ADDR_L, mac_addr);
if (err)
return err;
err = ar9170_set_mac_reg(ar, AR9170_MAC_REG_BSSID_L, bssid);
if (err)
return err;
err = ar9170_set_promiscouous(ar);
if (err)
return err;
/* set AMPDU density to 8us. */
err = ar9170_set_ampdu_density(ar, 6);
if (err)
return err;
ar9170_regwrite_begin(ar);
ar9170_regwrite(AR9170_MAC_REG_POWERMANAGEMENT, pm_mode);
ar9170_regwrite_finish();
return ar9170_regwrite_result();
}
int ar9170_set_hwretry_limit(struct ar9170 *ar, unsigned int max_retry)
{
u32 tmp = min_t(u32, 0x33333, max_retry * 0x11111);
return ar9170_write_reg(ar, AR9170_MAC_REG_RETRY_MAX, tmp);
}
int ar9170_set_beacon_timers(struct ar9170 *ar)
{
u32 v = 0;
u32 pretbtt = 0;
if (ar->vif) {
v |= ar->vif->bss_conf.beacon_int;
if (ar->enable_beacon) {
switch (ar->vif->type) {
case NL80211_IFTYPE_MESH_POINT:
case NL80211_IFTYPE_ADHOC:
v |= BIT(25);
break;
case NL80211_IFTYPE_AP:
v |= BIT(24);
pretbtt = (ar->vif->bss_conf.beacon_int - 6) <<
16;
break;
default:
break;
}
}
v |= ar->vif->bss_conf.dtim_period << 16;
}
ar9170_regwrite_begin(ar);
ar9170_regwrite(AR9170_MAC_REG_PRETBTT, pretbtt);
ar9170_regwrite(AR9170_MAC_REG_BCN_PERIOD, v);
ar9170_regwrite_finish();
return ar9170_regwrite_result();
}
int ar9170_update_beacon(struct ar9170 *ar)
{
struct sk_buff *skb;
__le32 *data, *old = NULL;
u32 word;
int i;
skb = ieee80211_beacon_get(ar->hw, ar->vif);
if (!skb)
return -ENOMEM;
data = (__le32 *)skb->data;
if (ar->beacon)
old = (__le32 *)ar->beacon->data;
ar9170_regwrite_begin(ar);
for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) {
/*
* XXX: This accesses beyond skb data for up
* to the last 3 bytes!!
*/
if (old && (data[i] == old[i]))
continue;
word = le32_to_cpu(data[i]);
ar9170_regwrite(AR9170_BEACON_BUFFER_ADDRESS + 4 * i, word);
}
/* XXX: use skb->cb info */
if (ar->hw->conf.channel->band == IEEE80211_BAND_2GHZ)
ar9170_regwrite(AR9170_MAC_REG_BCN_PLCP,
((skb->len + 4) << (3 + 16)) + 0x0400);
else
ar9170_regwrite(AR9170_MAC_REG_BCN_PLCP,
((skb->len + 4) << 16) + 0x001b);
ar9170_regwrite(AR9170_MAC_REG_BCN_LENGTH, skb->len + 4);
ar9170_regwrite(AR9170_MAC_REG_BCN_ADDR, AR9170_BEACON_BUFFER_ADDRESS);
ar9170_regwrite(AR9170_MAC_REG_BCN_CTRL, 1);
ar9170_regwrite_finish();
dev_kfree_skb(ar->beacon);
ar->beacon = skb;
return ar9170_regwrite_result();
}
void ar9170_new_beacon(struct work_struct *work)
{
struct ar9170 *ar = container_of(work, struct ar9170,
beacon_work);
struct sk_buff *skb;
if (unlikely(!IS_STARTED(ar)))
return ;
mutex_lock(&ar->mutex);
if (!ar->vif)
goto out;
ar9170_update_beacon(ar);
rcu_read_lock();
while ((skb = ieee80211_get_buffered_bc(ar->hw, ar->vif)))
ar9170_op_tx(ar->hw, skb);
rcu_read_unlock();
out:
mutex_unlock(&ar->mutex);
}
int ar9170_upload_key(struct ar9170 *ar, u8 id, const u8 *mac, u8 ktype,
u8 keyidx, u8 *keydata, int keylen)
{
__le32 vals[7];
static const u8 bcast[ETH_ALEN] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
u8 dummy;
mac = mac ? : bcast;
vals[0] = cpu_to_le32((keyidx << 16) + id);
vals[1] = cpu_to_le32(mac[1] << 24 | mac[0] << 16 | ktype);
vals[2] = cpu_to_le32(mac[5] << 24 | mac[4] << 16 |
mac[3] << 8 | mac[2]);
memset(&vals[3], 0, 16);
if (keydata)
memcpy(&vals[3], keydata, keylen);
return ar->exec_cmd(ar, AR9170_CMD_EKEY,
sizeof(vals), (u8 *)vals,
1, &dummy);
}
int ar9170_disable_key(struct ar9170 *ar, u8 id)
{
__le32 val = cpu_to_le32(id);
u8 dummy;
return ar->exec_cmd(ar, AR9170_CMD_EKEY,
sizeof(val), (u8 *)&val,
1, &dummy);
}