vsphere-influxdb-go/vendor/github.com/influxdata/influxdb/tsdb/index/inmem/meta.go

1547 lines
39 KiB
Go

package inmem
import (
"bytes"
"fmt"
"regexp"
"sort"
"sync"
"github.com/influxdata/influxdb/influxql"
"github.com/influxdata/influxdb/models"
"github.com/influxdata/influxdb/tsdb"
)
// Measurement represents a collection of time series in a database. It also
// contains in memory structures for indexing tags. Exported functions are
// goroutine safe while un-exported functions assume the caller will use the
// appropriate locks.
type Measurement struct {
database string
Name string `json:"name,omitempty"`
name []byte // cached version as []byte
mu sync.RWMutex
fieldNames map[string]struct{}
// in-memory index fields
seriesByID map[uint64]*Series // lookup table for series by their id
seriesByTagKeyValue map[string]map[string]SeriesIDs // map from tag key to value to sorted set of series ids
// lazyily created sorted series IDs
sortedSeriesIDs SeriesIDs // sorted list of series IDs in this measurement
}
// NewMeasurement allocates and initializes a new Measurement.
func NewMeasurement(database, name string) *Measurement {
return &Measurement{
database: database,
Name: name,
name: []byte(name),
fieldNames: make(map[string]struct{}),
seriesByID: make(map[uint64]*Series),
seriesByTagKeyValue: make(map[string]map[string]SeriesIDs),
}
}
func (m *Measurement) HasField(name string) bool {
m.mu.RLock()
_, hasField := m.fieldNames[name]
m.mu.RUnlock()
return hasField
}
// SeriesByID returns a series by identifier.
func (m *Measurement) SeriesByID(id uint64) *Series {
m.mu.RLock()
defer m.mu.RUnlock()
return m.seriesByID[id]
}
// SeriesByIDMap returns the internal seriesByID map.
func (m *Measurement) SeriesByIDMap() map[uint64]*Series {
m.mu.RLock()
defer m.mu.RUnlock()
return m.seriesByID
}
// SeriesByIDSlice returns a list of series by identifiers.
func (m *Measurement) SeriesByIDSlice(ids []uint64) []*Series {
m.mu.RLock()
defer m.mu.RUnlock()
a := make([]*Series, len(ids))
for i, id := range ids {
a[i] = m.seriesByID[id]
}
return a
}
// AppendSeriesKeysByID appends keys for a list of series ids to a buffer.
func (m *Measurement) AppendSeriesKeysByID(dst []string, ids []uint64) []string {
m.mu.RLock()
defer m.mu.RUnlock()
for _, id := range ids {
if s := m.seriesByID[id]; s != nil {
dst = append(dst, s.Key)
}
}
return dst
}
// SeriesKeysByID returns the a list of keys for a set of ids.
func (m *Measurement) SeriesKeysByID(ids SeriesIDs) [][]byte {
m.mu.RLock()
defer m.mu.RUnlock()
keys := make([][]byte, 0, len(ids))
for _, id := range ids {
s := m.seriesByID[id]
if s == nil {
continue
}
keys = append(keys, []byte(s.Key))
}
return keys
}
// SeriesKeys returns the keys of every series in this measurement
func (m *Measurement) SeriesKeys() [][]byte {
m.mu.RLock()
defer m.mu.RUnlock()
keys := make([][]byte, 0, len(m.seriesByID))
for _, s := range m.seriesByID {
keys = append(keys, []byte(s.Key))
}
return keys
}
func (m *Measurement) SeriesIDs() SeriesIDs {
m.mu.RLock()
if len(m.sortedSeriesIDs) == len(m.seriesByID) {
s := m.sortedSeriesIDs
m.mu.RUnlock()
return s
}
m.mu.RUnlock()
m.mu.Lock()
if len(m.sortedSeriesIDs) == len(m.seriesByID) {
s := m.sortedSeriesIDs
m.mu.Unlock()
return s
}
m.sortedSeriesIDs = m.sortedSeriesIDs[:0]
if cap(m.sortedSeriesIDs) < len(m.seriesByID) {
m.sortedSeriesIDs = make(SeriesIDs, 0, len(m.seriesByID))
}
for k := range m.seriesByID {
m.sortedSeriesIDs = append(m.sortedSeriesIDs, k)
}
sort.Sort(m.sortedSeriesIDs)
s := m.sortedSeriesIDs
m.mu.Unlock()
return s
}
// HasTagKey returns true if at least one series in this measurement has written a value for the passed in tag key
func (m *Measurement) HasTagKey(k string) bool {
m.mu.RLock()
defer m.mu.RUnlock()
_, hasTag := m.seriesByTagKeyValue[k]
return hasTag
}
func (m *Measurement) HasTagKeyValue(k, v []byte) bool {
m.mu.RLock()
if vals, ok := m.seriesByTagKeyValue[string(k)]; ok {
_, ok := vals[string(v)]
m.mu.RUnlock()
return ok
}
m.mu.RUnlock()
return false
}
// HasSeries returns true if there is at least 1 series under this measurement.
func (m *Measurement) HasSeries() bool {
m.mu.RLock()
defer m.mu.RUnlock()
return len(m.seriesByID) > 0
}
// Cardinality returns the number of values associated with the given tag key.
func (m *Measurement) Cardinality(key string) int {
var n int
m.mu.RLock()
n = m.cardinality(key)
m.mu.RUnlock()
return n
}
func (m *Measurement) cardinality(key string) int {
return len(m.seriesByTagKeyValue[key])
}
// CardinalityBytes returns the number of values associated with the given tag key.
func (m *Measurement) CardinalityBytes(key []byte) int {
var n int
m.mu.RLock()
n = len(m.seriesByTagKeyValue[string(key)])
m.mu.RUnlock()
return n
}
// AddSeries adds a series to the measurement's index.
// It returns true if the series was added successfully or false if the series was already present.
func (m *Measurement) AddSeries(s *Series) bool {
m.mu.RLock()
if _, ok := m.seriesByID[s.ID]; ok {
m.mu.RUnlock()
return false
}
m.mu.RUnlock()
m.mu.Lock()
defer m.mu.Unlock()
if _, ok := m.seriesByID[s.ID]; ok {
return false
}
m.seriesByID[s.ID] = s
if len(m.seriesByID) == 1 || (len(m.sortedSeriesIDs) == len(m.seriesByID)-1 && s.ID > m.sortedSeriesIDs[len(m.sortedSeriesIDs)-1]) {
m.sortedSeriesIDs = append(m.sortedSeriesIDs, s.ID)
}
// add this series id to the tag index on the measurement
s.ForEachTag(func(t models.Tag) {
valueMap := m.seriesByTagKeyValue[string(t.Key)]
if valueMap == nil {
valueMap = make(map[string]SeriesIDs)
m.seriesByTagKeyValue[string(t.Key)] = valueMap
}
ids := valueMap[string(t.Value)]
ids = append(ids, s.ID)
// most of the time the series ID will be higher than all others because it's a new
// series. So don't do the sort if we don't have to.
if len(ids) > 1 && ids[len(ids)-1] < ids[len(ids)-2] {
sort.Sort(ids)
}
valueMap[string(t.Value)] = ids
})
return true
}
// DropSeries removes a series from the measurement's index.
func (m *Measurement) DropSeries(series *Series) {
seriesID := series.ID
m.mu.Lock()
defer m.mu.Unlock()
if _, ok := m.seriesByID[seriesID]; !ok {
return
}
delete(m.seriesByID, seriesID)
// clear our lazily sorted set of ids
m.sortedSeriesIDs = m.sortedSeriesIDs[:0]
// remove this series id from the tag index on the measurement
// s.seriesByTagKeyValue is defined as map[string]map[string]SeriesIDs
series.ForEachTag(func(t models.Tag) {
values := m.seriesByTagKeyValue[string(t.Key)][string(t.Value)]
ids := filter(values, seriesID)
// Check to see if we have any ids, if not, remove the key
if len(ids) == 0 {
delete(m.seriesByTagKeyValue[string(t.Key)], string(t.Value))
} else {
m.seriesByTagKeyValue[string(t.Key)][string(t.Value)] = ids
}
// If we have no values, then we delete the key
if len(m.seriesByTagKeyValue[string(t.Key)]) == 0 {
delete(m.seriesByTagKeyValue, string(t.Key))
}
})
return
}
// filters walks the where clause of a select statement and returns a map with all series ids
// matching the where clause and any filter expression that should be applied to each
func (m *Measurement) filters(condition influxql.Expr) ([]uint64, map[uint64]influxql.Expr, error) {
if condition == nil || influxql.OnlyTimeExpr(condition) {
return m.SeriesIDs(), nil, nil
}
return m.WalkWhereForSeriesIds(condition)
}
// ForEachSeriesByExpr iterates over all series filtered by condition.
func (m *Measurement) ForEachSeriesByExpr(condition influxql.Expr, fn func(tags models.Tags) error) error {
// Retrieve matching series ids.
ids, _, err := m.filters(condition)
if err != nil {
return err
}
// Iterate over each series.
for _, id := range ids {
s := m.SeriesByID(id)
if err := fn(s.Tags()); err != nil {
return err
}
}
return nil
}
// TagSets returns the unique tag sets that exist for the given tag keys. This is used to determine
// what composite series will be created by a group by. i.e. "group by region" should return:
// {"region":"uswest"}, {"region":"useast"}
// or region, service returns
// {"region": "uswest", "service": "redis"}, {"region": "uswest", "service": "mysql"}, etc...
// This will also populate the TagSet objects with the series IDs that match each tagset and any
// influx filter expression that goes with the series
// TODO: this shouldn't be exported. However, until tx.go and the engine get refactored into tsdb, we need it.
func (m *Measurement) TagSets(shardID uint64, opt influxql.IteratorOptions) ([]*influxql.TagSet, error) {
// get the unique set of series ids and the filters that should be applied to each
ids, filters, err := m.filters(opt.Condition)
if err != nil {
return nil, err
}
var dims []string
if len(opt.Dimensions) > 0 {
dims = make([]string, len(opt.Dimensions))
copy(dims, opt.Dimensions)
sort.Strings(dims)
}
m.mu.RLock()
// For every series, get the tag values for the requested tag keys i.e. dimensions. This is the
// TagSet for that series. Series with the same TagSet are then grouped together, because for the
// purpose of GROUP BY they are part of the same composite series.
tagSets := make(map[string]*influxql.TagSet, 64)
var seriesN int
for _, id := range ids {
// Abort if the query was killed
select {
case <-opt.InterruptCh:
m.mu.RUnlock()
return nil, influxql.ErrQueryInterrupted
default:
}
if opt.MaxSeriesN > 0 && seriesN > opt.MaxSeriesN {
m.mu.RUnlock()
return nil, fmt.Errorf("max-select-series limit exceeded: (%d/%d)", seriesN, opt.MaxSeriesN)
}
s := m.seriesByID[id]
if !s.Assigned(shardID) {
continue
}
if opt.Authorizer != nil && !opt.Authorizer.AuthorizeSeriesRead(m.database, m.name, s.Tags()) {
continue
}
var tagsAsKey []byte
if len(dims) > 0 {
tagsAsKey = tsdb.MakeTagsKey(dims, s.Tags())
}
tagSet, ok := tagSets[string(tagsAsKey)]
if !ok {
// This TagSet is new, create a new entry for it.
tagSet = &influxql.TagSet{
Tags: nil,
Key: tagsAsKey,
}
tagSets[string(tagsAsKey)] = tagSet
}
// Associate the series and filter with the Tagset.
tagSet.AddFilter(s.Key, filters[id])
seriesN++
}
// Release the lock while we sort all the tags
m.mu.RUnlock()
// Sort the series in each tag set.
for _, t := range tagSets {
// Abort if the query was killed
select {
case <-opt.InterruptCh:
return nil, influxql.ErrQueryInterrupted
default:
}
sort.Sort(t)
}
// The TagSets have been created, as a map of TagSets. Just send
// the values back as a slice, sorting for consistency.
sortedTagsSets := make([]*influxql.TagSet, 0, len(tagSets))
for _, v := range tagSets {
sortedTagsSets = append(sortedTagsSets, v)
}
sort.Sort(byTagKey(sortedTagsSets))
return sortedTagsSets, nil
}
// intersectSeriesFilters performs an intersection for two sets of ids and filter expressions.
func intersectSeriesFilters(lids, rids SeriesIDs, lfilters, rfilters FilterExprs) (SeriesIDs, FilterExprs) {
// We only want to allocate a slice and map of the smaller size.
var ids []uint64
if len(lids) > len(rids) {
ids = make([]uint64, 0, len(rids))
} else {
ids = make([]uint64, 0, len(lids))
}
var filters FilterExprs
if len(lfilters) > len(rfilters) {
filters = make(FilterExprs, len(rfilters))
} else {
filters = make(FilterExprs, len(lfilters))
}
// They're in sorted order so advance the counter as needed.
// This is, don't run comparisons against lower values that we've already passed.
for len(lids) > 0 && len(rids) > 0 {
lid, rid := lids[0], rids[0]
if lid == rid {
ids = append(ids, lid)
var expr influxql.Expr
lfilter := lfilters[lid]
rfilter := rfilters[rid]
if lfilter != nil && rfilter != nil {
be := &influxql.BinaryExpr{
Op: influxql.AND,
LHS: lfilter,
RHS: rfilter,
}
expr = influxql.Reduce(be, nil)
} else if lfilter != nil {
expr = lfilter
} else if rfilter != nil {
expr = rfilter
}
if expr != nil {
filters[lid] = expr
}
lids, rids = lids[1:], rids[1:]
} else if lid < rid {
lids = lids[1:]
} else {
rids = rids[1:]
}
}
return ids, filters
}
// unionSeriesFilters performs a union for two sets of ids and filter expressions.
func unionSeriesFilters(lids, rids SeriesIDs, lfilters, rfilters FilterExprs) (SeriesIDs, FilterExprs) {
ids := make([]uint64, 0, len(lids)+len(rids))
// Setup the filters with the smallest size since we will discard filters
// that do not have a match on the other side.
var filters FilterExprs
if len(lfilters) < len(rfilters) {
filters = make(FilterExprs, len(lfilters))
} else {
filters = make(FilterExprs, len(rfilters))
}
for len(lids) > 0 && len(rids) > 0 {
lid, rid := lids[0], rids[0]
if lid == rid {
ids = append(ids, lid)
// If one side does not have a filter, then the series has been
// included on one side of the OR with no condition. Eliminate the
// filter in this case.
var expr influxql.Expr
lfilter := lfilters[lid]
rfilter := rfilters[rid]
if lfilter != nil && rfilter != nil {
be := &influxql.BinaryExpr{
Op: influxql.OR,
LHS: lfilter,
RHS: rfilter,
}
expr = influxql.Reduce(be, nil)
}
if expr != nil {
filters[lid] = expr
}
lids, rids = lids[1:], rids[1:]
} else if lid < rid {
ids = append(ids, lid)
filter := lfilters[lid]
if filter != nil {
filters[lid] = filter
}
lids = lids[1:]
} else {
ids = append(ids, rid)
filter := rfilters[rid]
if filter != nil {
filters[rid] = filter
}
rids = rids[1:]
}
}
// Now append the remainder.
if len(lids) > 0 {
for i := 0; i < len(lids); i++ {
ids = append(ids, lids[i])
filter := lfilters[lids[i]]
if filter != nil {
filters[lids[i]] = filter
}
}
} else if len(rids) > 0 {
for i := 0; i < len(rids); i++ {
ids = append(ids, rids[i])
filter := rfilters[rids[i]]
if filter != nil {
filters[rids[i]] = filter
}
}
}
return ids, filters
}
// IDsForExpr returns the series IDs that are candidates to match the given expression.
func (m *Measurement) IDsForExpr(n *influxql.BinaryExpr) SeriesIDs {
ids, _, _ := m.idsForExpr(n)
return ids
}
// idsForExpr returns a collection of series ids and a filter expression that should
// be used to filter points from those series.
func (m *Measurement) idsForExpr(n *influxql.BinaryExpr) (SeriesIDs, influxql.Expr, error) {
// If this binary expression has another binary expression, then this
// is some expression math and we should just pass it to the underlying query.
if _, ok := n.LHS.(*influxql.BinaryExpr); ok {
return m.SeriesIDs(), n, nil
} else if _, ok := n.RHS.(*influxql.BinaryExpr); ok {
return m.SeriesIDs(), n, nil
}
// Retrieve the variable reference from the correct side of the expression.
name, ok := n.LHS.(*influxql.VarRef)
value := n.RHS
if !ok {
name, ok = n.RHS.(*influxql.VarRef)
if !ok {
return nil, nil, fmt.Errorf("invalid expression: %s", n.String())
}
value = n.LHS
}
// For time literals, return all series IDs and "true" as the filter.
if _, ok := value.(*influxql.TimeLiteral); ok || name.Val == "time" {
return m.SeriesIDs(), &influxql.BooleanLiteral{Val: true}, nil
}
// For fields, return all series IDs from this measurement and return
// the expression passed in, as the filter.
if name.Val != "_name" && ((name.Type == influxql.Unknown && m.HasField(name.Val)) || name.Type == influxql.AnyField || (name.Type != influxql.Tag && name.Type != influxql.Unknown)) {
return m.SeriesIDs(), n, nil
} else if value, ok := value.(*influxql.VarRef); ok {
// Check if the RHS is a variable and if it is a field.
if value.Val != "_name" && ((value.Type == influxql.Unknown && m.HasField(value.Val)) || name.Type == influxql.AnyField || (value.Type != influxql.Tag && value.Type != influxql.Unknown)) {
return m.SeriesIDs(), n, nil
}
}
// Retrieve list of series with this tag key.
tagVals := m.seriesByTagKeyValue[name.Val]
// if we're looking for series with a specific tag value
if str, ok := value.(*influxql.StringLiteral); ok {
var ids SeriesIDs
// Special handling for "_name" to match measurement name.
if name.Val == "_name" {
if (n.Op == influxql.EQ && str.Val == m.Name) || (n.Op == influxql.NEQ && str.Val != m.Name) {
return m.SeriesIDs(), nil, nil
}
return nil, nil, nil
}
if n.Op == influxql.EQ {
if str.Val != "" {
// return series that have a tag of specific value.
ids = tagVals[str.Val]
} else {
// Make a copy of all series ids and mark the ones we need to evict.
seriesIDs := newEvictSeriesIDs(m.SeriesIDs())
// Go through each slice and mark the values we find as zero so
// they can be removed later.
for _, a := range tagVals {
seriesIDs.mark(a)
}
// Make a new slice with only the remaining ids.
ids = seriesIDs.evict()
}
} else if n.Op == influxql.NEQ {
if str.Val != "" {
ids = m.SeriesIDs().Reject(tagVals[str.Val])
} else {
for k := range tagVals {
ids = append(ids, tagVals[k]...)
}
sort.Sort(ids)
}
}
return ids, nil, nil
}
// if we're looking for series with a tag value that matches a regex
if re, ok := value.(*influxql.RegexLiteral); ok {
var ids SeriesIDs
// Special handling for "_name" to match measurement name.
if name.Val == "_name" {
match := re.Val.MatchString(m.Name)
if (n.Op == influxql.EQREGEX && match) || (n.Op == influxql.NEQREGEX && !match) {
return m.SeriesIDs(), &influxql.BooleanLiteral{Val: true}, nil
}
return nil, nil, nil
}
// Check if we match the empty string to see if we should include series
// that are missing the tag.
empty := re.Val.MatchString("")
// Gather the series that match the regex. If we should include the empty string,
// start with the list of all series and reject series that don't match our condition.
// If we should not include the empty string, include series that match our condition.
if empty && n.Op == influxql.EQREGEX {
// See comments above for EQ with a StringLiteral.
seriesIDs := newEvictSeriesIDs(m.SeriesIDs())
for k := range tagVals {
if !re.Val.MatchString(k) {
seriesIDs.mark(tagVals[k])
}
}
ids = seriesIDs.evict()
} else if empty && n.Op == influxql.NEQREGEX {
ids = make(SeriesIDs, 0, len(m.SeriesIDs()))
for k := range tagVals {
if !re.Val.MatchString(k) {
ids = append(ids, tagVals[k]...)
}
}
sort.Sort(ids)
} else if !empty && n.Op == influxql.EQREGEX {
ids = make(SeriesIDs, 0, len(m.SeriesIDs()))
for k := range tagVals {
if re.Val.MatchString(k) {
ids = append(ids, tagVals[k]...)
}
}
sort.Sort(ids)
} else if !empty && n.Op == influxql.NEQREGEX {
// See comments above for EQ with a StringLiteral.
seriesIDs := newEvictSeriesIDs(m.SeriesIDs())
for k := range tagVals {
if re.Val.MatchString(k) {
seriesIDs.mark(tagVals[k])
}
}
ids = seriesIDs.evict()
}
return ids, nil, nil
}
// compare tag values
if ref, ok := value.(*influxql.VarRef); ok {
var ids SeriesIDs
if n.Op == influxql.NEQ {
ids = m.SeriesIDs()
}
rhsTagVals := m.seriesByTagKeyValue[ref.Val]
for k := range tagVals {
tags := tagVals[k].Intersect(rhsTagVals[k])
if n.Op == influxql.EQ {
ids = ids.Union(tags)
} else if n.Op == influxql.NEQ {
ids = ids.Reject(tags)
}
}
return ids, nil, nil
}
if n.Op == influxql.NEQ || n.Op == influxql.NEQREGEX {
return m.SeriesIDs(), nil, nil
}
return nil, nil, nil
}
// FilterExprs represents a map of series IDs to filter expressions.
type FilterExprs map[uint64]influxql.Expr
// DeleteBoolLiteralTrues deletes all elements whose filter expression is a boolean literal true.
func (fe FilterExprs) DeleteBoolLiteralTrues() {
for id, expr := range fe {
if e, ok := expr.(*influxql.BooleanLiteral); ok && e.Val {
delete(fe, id)
}
}
}
// Len returns the number of elements.
func (fe FilterExprs) Len() int {
if fe == nil {
return 0
}
return len(fe)
}
// WalkWhereForSeriesIds recursively walks the WHERE clause and returns an ordered set of series IDs and
// a map from those series IDs to filter expressions that should be used to limit points returned in
// the final query result.
func (m *Measurement) WalkWhereForSeriesIds(expr influxql.Expr) (SeriesIDs, FilterExprs, error) {
switch n := expr.(type) {
case *influxql.BinaryExpr:
switch n.Op {
case influxql.EQ, influxql.NEQ, influxql.LT, influxql.LTE, influxql.GT, influxql.GTE, influxql.EQREGEX, influxql.NEQREGEX:
// Get the series IDs and filter expression for the tag or field comparison.
ids, expr, err := m.idsForExpr(n)
if err != nil {
return nil, nil, err
}
if len(ids) == 0 {
return ids, nil, nil
}
// If the expression is a boolean literal that is true, ignore it.
if b, ok := expr.(*influxql.BooleanLiteral); ok && b.Val {
expr = nil
}
var filters FilterExprs
if expr != nil {
filters = make(FilterExprs, len(ids))
for _, id := range ids {
filters[id] = expr
}
}
return ids, filters, nil
case influxql.AND, influxql.OR:
// Get the series IDs and filter expressions for the LHS.
lids, lfilters, err := m.WalkWhereForSeriesIds(n.LHS)
if err != nil {
return nil, nil, err
}
// Get the series IDs and filter expressions for the RHS.
rids, rfilters, err := m.WalkWhereForSeriesIds(n.RHS)
if err != nil {
return nil, nil, err
}
// Combine the series IDs from the LHS and RHS.
if n.Op == influxql.AND {
ids, filters := intersectSeriesFilters(lids, rids, lfilters, rfilters)
return ids, filters, nil
} else {
ids, filters := unionSeriesFilters(lids, rids, lfilters, rfilters)
return ids, filters, nil
}
}
ids, _, err := m.idsForExpr(n)
return ids, nil, err
case *influxql.ParenExpr:
// walk down the tree
return m.WalkWhereForSeriesIds(n.Expr)
default:
return nil, nil, nil
}
}
// expandExpr returns a list of expressions expanded by all possible tag
// combinations.
func (m *Measurement) expandExpr(expr influxql.Expr) []tagSetExpr {
// Retrieve list of unique values for each tag.
valuesByTagKey := m.uniqueTagValues(expr)
// Convert keys to slices.
keys := make([]string, 0, len(valuesByTagKey))
for key := range valuesByTagKey {
keys = append(keys, key)
}
sort.Strings(keys)
// Order uniques by key.
uniques := make([][]string, len(keys))
for i, key := range keys {
uniques[i] = valuesByTagKey[key]
}
// Reduce a condition for each combination of tag values.
return expandExprWithValues(expr, keys, []tagExpr{}, uniques, 0)
}
func expandExprWithValues(expr influxql.Expr, keys []string, tagExprs []tagExpr, uniques [][]string, index int) []tagSetExpr {
// If we have no more keys left then execute the reduction and return.
if index == len(keys) {
// Create a map of tag key/values.
m := make(map[string]*string, len(keys))
for i, key := range keys {
if tagExprs[i].op == influxql.EQ {
m[key] = &tagExprs[i].values[0]
} else {
m[key] = nil
}
}
// TODO: Rewrite full expressions instead of VarRef replacement.
// Reduce using the current tag key/value set.
// Ignore it if reduces down to "false".
e := influxql.Reduce(expr, &tagValuer{tags: m})
if e, ok := e.(*influxql.BooleanLiteral); ok && !e.Val {
return nil
}
return []tagSetExpr{{values: copyTagExprs(tagExprs), expr: e}}
}
// Otherwise expand for each possible equality value of the key.
var exprs []tagSetExpr
for _, v := range uniques[index] {
exprs = append(exprs, expandExprWithValues(expr, keys, append(tagExprs, tagExpr{keys[index], []string{v}, influxql.EQ}), uniques, index+1)...)
}
exprs = append(exprs, expandExprWithValues(expr, keys, append(tagExprs, tagExpr{keys[index], uniques[index], influxql.NEQ}), uniques, index+1)...)
return exprs
}
// SeriesIDsAllOrByExpr walks an expressions for matching series IDs
// or, if no expressions is given, returns all series IDs for the measurement.
func (m *Measurement) SeriesIDsAllOrByExpr(expr influxql.Expr) (SeriesIDs, error) {
// If no expression given or the measurement has no series,
// we can take just return the ids or nil accordingly.
if expr == nil {
return m.SeriesIDs(), nil
}
m.mu.RLock()
l := len(m.seriesByID)
m.mu.RUnlock()
if l == 0 {
return nil, nil
}
// Get series IDs that match the WHERE clause.
ids, _, err := m.WalkWhereForSeriesIds(expr)
if err != nil {
return nil, err
}
return ids, nil
}
// tagKeysByExpr extracts the tag keys wanted by the expression.
func (m *Measurement) TagKeysByExpr(expr influxql.Expr) (map[string]struct{}, error) {
switch e := expr.(type) {
case *influxql.BinaryExpr:
switch e.Op {
case influxql.EQ, influxql.NEQ, influxql.EQREGEX, influxql.NEQREGEX:
tag, ok := e.LHS.(*influxql.VarRef)
if !ok {
return nil, fmt.Errorf("left side of '%s' must be a tag key", e.Op.String())
} else if tag.Val != "_tagKey" {
return nil, nil
}
if influxql.IsRegexOp(e.Op) {
re, ok := e.RHS.(*influxql.RegexLiteral)
if !ok {
return nil, fmt.Errorf("right side of '%s' must be a regular expression", e.Op.String())
}
return m.tagKeysByFilter(e.Op, "", re.Val), nil
}
s, ok := e.RHS.(*influxql.StringLiteral)
if !ok {
return nil, fmt.Errorf("right side of '%s' must be a tag value string", e.Op.String())
}
return m.tagKeysByFilter(e.Op, s.Val, nil), nil
case influxql.AND, influxql.OR:
lhs, err := m.TagKeysByExpr(e.LHS)
if err != nil {
return nil, err
}
rhs, err := m.TagKeysByExpr(e.RHS)
if err != nil {
return nil, err
}
if lhs != nil && rhs != nil {
if e.Op == influxql.OR {
return stringSet(lhs).union(rhs), nil
}
return stringSet(lhs).intersect(rhs), nil
} else if lhs != nil {
return lhs, nil
} else if rhs != nil {
return rhs, nil
}
return nil, nil
default:
return nil, fmt.Errorf("invalid operator")
}
case *influxql.ParenExpr:
return m.TagKeysByExpr(e.Expr)
}
return nil, fmt.Errorf("%#v", expr)
}
// tagKeysByFilter will filter the tag keys for the measurement.
func (m *Measurement) tagKeysByFilter(op influxql.Token, val string, regex *regexp.Regexp) stringSet {
ss := newStringSet()
for _, key := range m.TagKeys() {
var matched bool
switch op {
case influxql.EQ:
matched = key == val
case influxql.NEQ:
matched = key != val
case influxql.EQREGEX:
matched = regex.MatchString(key)
case influxql.NEQREGEX:
matched = !regex.MatchString(key)
}
if !matched {
continue
}
ss.add(key)
}
return ss
}
// tagValuer is used during expression expansion to evaluate all sets of tag values.
type tagValuer struct {
tags map[string]*string
}
// Value returns the string value of a tag and true if it's listed in the tagset.
func (v *tagValuer) Value(name string) (interface{}, bool) {
if value, ok := v.tags[name]; ok {
if value == nil {
return nil, true
}
return *value, true
}
return nil, false
}
// tagSetExpr represents a set of tag keys/values and associated expression.
type tagSetExpr struct {
values []tagExpr
expr influxql.Expr
}
// tagExpr represents one or more values assigned to a given tag.
type tagExpr struct {
key string
values []string
op influxql.Token // EQ or NEQ
}
func copyTagExprs(a []tagExpr) []tagExpr {
other := make([]tagExpr, len(a))
copy(other, a)
return other
}
// uniqueTagValues returns a list of unique tag values used in an expression.
func (m *Measurement) uniqueTagValues(expr influxql.Expr) map[string][]string {
// Track unique value per tag.
tags := make(map[string]map[string]struct{})
// Find all tag values referenced in the expression.
influxql.WalkFunc(expr, func(n influxql.Node) {
switch n := n.(type) {
case *influxql.BinaryExpr:
// Ignore operators that are not equality.
if n.Op != influxql.EQ {
return
}
// Extract ref and string literal.
var key, value string
switch lhs := n.LHS.(type) {
case *influxql.VarRef:
if rhs, ok := n.RHS.(*influxql.StringLiteral); ok {
key, value = lhs.Val, rhs.Val
}
case *influxql.StringLiteral:
if rhs, ok := n.RHS.(*influxql.VarRef); ok {
key, value = rhs.Val, lhs.Val
}
}
if key == "" {
return
}
// Add value to set.
if tags[key] == nil {
tags[key] = make(map[string]struct{})
}
tags[key][value] = struct{}{}
}
})
// Convert to map of slices.
out := make(map[string][]string)
for k, values := range tags {
out[k] = make([]string, 0, len(values))
for v := range values {
out[k] = append(out[k], v)
}
sort.Strings(out[k])
}
return out
}
// Measurements represents a list of *Measurement.
type Measurements []*Measurement
// Len implements sort.Interface.
func (a Measurements) Len() int { return len(a) }
// Less implements sort.Interface.
func (a Measurements) Less(i, j int) bool { return a[i].Name < a[j].Name }
// Swap implements sort.Interface.
func (a Measurements) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a Measurements) Intersect(other Measurements) Measurements {
l := a
r := other
// we want to iterate through the shortest one and stop
if len(other) < len(a) {
l = other
r = a
}
// they're in sorted order so advance the counter as needed.
// That is, don't run comparisons against lower values that we've already passed
var i, j int
result := make(Measurements, 0, len(l))
for i < len(l) && j < len(r) {
if l[i].Name == r[j].Name {
result = append(result, l[i])
i++
j++
} else if l[i].Name < r[j].Name {
i++
} else {
j++
}
}
return result
}
func (a Measurements) Union(other Measurements) Measurements {
result := make(Measurements, 0, len(a)+len(other))
var i, j int
for i < len(a) && j < len(other) {
if a[i].Name == other[j].Name {
result = append(result, a[i])
i++
j++
} else if a[i].Name < other[j].Name {
result = append(result, a[i])
i++
} else {
result = append(result, other[j])
j++
}
}
// now append the remainder
if i < len(a) {
result = append(result, a[i:]...)
} else if j < len(other) {
result = append(result, other[j:]...)
}
return result
}
// Series belong to a Measurement and represent unique time series in a database.
type Series struct {
mu sync.RWMutex
Key string
tags models.Tags
ID uint64
measurement *Measurement
shardIDs map[uint64]struct{} // shards that have this series defined
}
// NewSeries returns an initialized series struct
func NewSeries(key []byte, tags models.Tags) *Series {
return &Series{
Key: string(key),
tags: tags,
shardIDs: make(map[uint64]struct{}),
}
}
func (s *Series) AssignShard(shardID uint64) {
s.mu.RLock()
_, ok := s.shardIDs[shardID]
s.mu.RUnlock()
if ok {
return
}
s.mu.Lock()
// Skip the existence check under the write lock because we're just storing
// and empty struct.
s.shardIDs[shardID] = struct{}{}
s.mu.Unlock()
}
func (s *Series) UnassignShard(shardID uint64) {
s.mu.Lock()
delete(s.shardIDs, shardID)
s.mu.Unlock()
}
func (s *Series) Assigned(shardID uint64) bool {
s.mu.RLock()
_, ok := s.shardIDs[shardID]
s.mu.RUnlock()
return ok
}
func (s *Series) ShardN() int {
s.mu.RLock()
n := len(s.shardIDs)
s.mu.RUnlock()
return n
}
// Measurement returns the measurement on the series.
func (s *Series) Measurement() *Measurement {
return s.measurement
}
// SetMeasurement sets the measurement on the series.
func (s *Series) SetMeasurement(m *Measurement) {
s.measurement = m
}
// ForEachTag executes fn for every tag. Iteration occurs under lock.
func (s *Series) ForEachTag(fn func(models.Tag)) {
s.mu.RLock()
defer s.mu.RUnlock()
for _, t := range s.tags {
fn(t)
}
}
// Tags returns a copy of the tags under lock.
func (s *Series) Tags() models.Tags {
s.mu.RLock()
defer s.mu.RUnlock()
return s.tags
}
// CopyTags clones the tags on the series in-place,
func (s *Series) CopyTags() {
s.mu.Lock()
defer s.mu.Unlock()
s.tags = s.tags.Clone()
}
// GetTagString returns a tag value under lock.
func (s *Series) GetTagString(key string) string {
s.mu.RLock()
defer s.mu.RUnlock()
return s.tags.GetString(key)
}
// SeriesIDs is a convenience type for sorting, checking equality, and doing
// union and intersection of collections of series ids.
type SeriesIDs []uint64
// Len implements sort.Interface.
func (a SeriesIDs) Len() int { return len(a) }
// Less implements sort.Interface.
func (a SeriesIDs) Less(i, j int) bool { return a[i] < a[j] }
// Swap implements sort.Interface.
func (a SeriesIDs) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// Equals assumes that both are sorted.
func (a SeriesIDs) Equals(other SeriesIDs) bool {
if len(a) != len(other) {
return false
}
for i, s := range other {
if a[i] != s {
return false
}
}
return true
}
// Intersect returns a new collection of series ids in sorted order that is the intersection of the two.
// The two collections must already be sorted.
func (a SeriesIDs) Intersect(other SeriesIDs) SeriesIDs {
l := a
r := other
// we want to iterate through the shortest one and stop
if len(other) < len(a) {
l = other
r = a
}
// they're in sorted order so advance the counter as needed.
// That is, don't run comparisons against lower values that we've already passed
var i, j int
ids := make([]uint64, 0, len(l))
for i < len(l) && j < len(r) {
if l[i] == r[j] {
ids = append(ids, l[i])
i++
j++
} else if l[i] < r[j] {
i++
} else {
j++
}
}
return SeriesIDs(ids)
}
// Union returns a new collection of series ids in sorted order that is the union of the two.
// The two collections must already be sorted.
func (a SeriesIDs) Union(other SeriesIDs) SeriesIDs {
l := a
r := other
ids := make([]uint64, 0, len(l)+len(r))
var i, j int
for i < len(l) && j < len(r) {
if l[i] == r[j] {
ids = append(ids, l[i])
i++
j++
} else if l[i] < r[j] {
ids = append(ids, l[i])
i++
} else {
ids = append(ids, r[j])
j++
}
}
// now append the remainder
if i < len(l) {
ids = append(ids, l[i:]...)
} else if j < len(r) {
ids = append(ids, r[j:]...)
}
return ids
}
// Reject returns a new collection of series ids in sorted order with the passed in set removed from the original.
// This is useful for the NOT operator. The two collections must already be sorted.
func (a SeriesIDs) Reject(other SeriesIDs) SeriesIDs {
l := a
r := other
var i, j int
ids := make([]uint64, 0, len(l))
for i < len(l) && j < len(r) {
if l[i] == r[j] {
i++
j++
} else if l[i] < r[j] {
ids = append(ids, l[i])
i++
} else {
j++
}
}
// Append the remainder
if i < len(l) {
ids = append(ids, l[i:]...)
}
return SeriesIDs(ids)
}
// seriesID is a series id that may or may not have been evicted from the
// current id list.
type seriesID struct {
val uint64
evict bool
}
// evictSeriesIDs is a slice of SeriesIDs with an extra field to mark if the
// field should be evicted or not.
type evictSeriesIDs struct {
ids []seriesID
sz int
}
// newEvictSeriesIDs copies the ids into a new slice that can be used for
// evicting series from the slice.
func newEvictSeriesIDs(ids []uint64) evictSeriesIDs {
a := make([]seriesID, len(ids))
for i, id := range ids {
a[i].val = id
}
return evictSeriesIDs{
ids: a,
sz: len(a),
}
}
// mark marks all of the ids in the sorted slice to be evicted from the list of
// series ids. If an id to be evicted does not exist, it just gets ignored.
func (a *evictSeriesIDs) mark(ids []uint64) {
seriesIDs := a.ids
for _, id := range ids {
if len(seriesIDs) == 0 {
break
}
// Perform a binary search of the remaining slice if
// the first element does not match the value we're
// looking for.
i := 0
if seriesIDs[0].val < id {
i = sort.Search(len(seriesIDs), func(i int) bool {
return seriesIDs[i].val >= id
})
}
if i >= len(seriesIDs) {
break
} else if seriesIDs[i].val == id {
if !seriesIDs[i].evict {
seriesIDs[i].evict = true
a.sz--
}
// Skip over this series since it has been evicted and won't be
// encountered again.
i++
}
seriesIDs = seriesIDs[i:]
}
}
// evict creates a new slice with only the series that have not been evicted.
func (a *evictSeriesIDs) evict() (ids SeriesIDs) {
if a.sz == 0 {
return ids
}
// Make a new slice with only the remaining ids.
ids = make([]uint64, 0, a.sz)
for _, id := range a.ids {
if id.evict {
continue
}
ids = append(ids, id.val)
}
return ids
}
// TagFilter represents a tag filter when looking up other tags or measurements.
type TagFilter struct {
Op influxql.Token
Key string
Value string
Regex *regexp.Regexp
}
// WalkTagKeys calls fn for each tag key associated with m. The order of the
// keys is undefined.
func (m *Measurement) WalkTagKeys(fn func(k string)) {
m.mu.RLock()
defer m.mu.RUnlock()
for k := range m.seriesByTagKeyValue {
fn(k)
}
}
// TagKeys returns a list of the measurement's tag names, in sorted order.
func (m *Measurement) TagKeys() []string {
m.mu.RLock()
keys := make([]string, 0, len(m.seriesByTagKeyValue))
for k := range m.seriesByTagKeyValue {
keys = append(keys, k)
}
m.mu.RUnlock()
sort.Strings(keys)
return keys
}
// TagValues returns all the values for the given tag key, in an arbitrary order.
func (m *Measurement) TagValues(key string) []string {
m.mu.RLock()
defer m.mu.RUnlock()
values := make([]string, 0, len(m.seriesByTagKeyValue[key]))
for v := range m.seriesByTagKeyValue[key] {
values = append(values, v)
}
return values
}
// SetFieldName adds the field name to the measurement.
func (m *Measurement) SetFieldName(name string) {
m.mu.RLock()
if _, ok := m.fieldNames[name]; ok {
m.mu.RUnlock()
return
}
m.mu.RUnlock()
m.mu.Lock()
m.fieldNames[name] = struct{}{}
m.mu.Unlock()
}
// FieldNames returns a list of the measurement's field names, in an arbitrary order.
func (m *Measurement) FieldNames() []string {
m.mu.RLock()
defer m.mu.RUnlock()
a := make([]string, 0, len(m.fieldNames))
for n := range m.fieldNames {
a = append(a, n)
}
return a
}
func (m *Measurement) SeriesByTagKeyValue(key string) map[string]SeriesIDs {
m.mu.RLock()
ret := m.seriesByTagKeyValue[key]
m.mu.RUnlock()
return ret
}
// stringSet represents a set of strings.
type stringSet map[string]struct{}
// newStringSet returns an empty stringSet.
func newStringSet() stringSet {
return make(map[string]struct{})
}
// add adds strings to the set.
func (s stringSet) add(ss ...string) {
for _, n := range ss {
s[n] = struct{}{}
}
}
// list returns the current elements in the set, in sorted order.
func (s stringSet) list() []string {
l := make([]string, 0, len(s))
for k := range s {
l = append(l, k)
}
sort.Strings(l)
return l
}
// union returns the union of this set and another.
func (s stringSet) union(o stringSet) stringSet {
ns := newStringSet()
for k := range s {
ns[k] = struct{}{}
}
for k := range o {
ns[k] = struct{}{}
}
return ns
}
// intersect returns the intersection of this set and another.
func (s stringSet) intersect(o stringSet) stringSet {
shorter, longer := s, o
if len(longer) < len(shorter) {
shorter, longer = longer, shorter
}
ns := newStringSet()
for k := range shorter {
if _, ok := longer[k]; ok {
ns[k] = struct{}{}
}
}
return ns
}
// filter removes v from a if it exists. a must be sorted in ascending
// order.
func filter(a []uint64, v uint64) []uint64 {
// binary search for v
i := sort.Search(len(a), func(i int) bool { return a[i] >= v })
if i >= len(a) || a[i] != v {
return a
}
// we found it, so shift the right half down one, overwriting v's position.
copy(a[i:], a[i+1:])
return a[:len(a)-1]
}
type byTagKey []*influxql.TagSet
func (t byTagKey) Len() int { return len(t) }
func (t byTagKey) Less(i, j int) bool { return bytes.Compare(t[i].Key, t[j].Key) < 0 }
func (t byTagKey) Swap(i, j int) { t[i], t[j] = t[j], t[i] }